I. Bifurcation Theory

V.I. Arnol’d, V.S. Afrajmovich,
Yu. S. Il’yashenko, L.P. Shil’nikov

Translated from the Russian
by N.D. Kazarinoff

Contents

Preface ................................................................. 7

Chapter 1. Bifurcations of Equilibria ........................................ 10

§ 1. Families and Deformations ........................................... 11
   1.1. Families of Vector Fields ....................................... 11
   1.2. The Space of Jets .............................................. 11
   1.3. Sard’s Lemma and Transversality Theorems ....................... 12
   1.4. Simplest Applications: Singular Points of Generic Vector Fields 13
   1.5. Topologically Versal Deformations ............................... 14
   1.6. The Reduction Theorem ........................................ 15
   1.7. Generic and Principal Families ................................ 16

§ 2. Bifurcations of Singular Points in Generic One-Parameter Families 17
   2.1. Typical Germs and Principal Families .......................... 17
   2.2. Soft and Hard Loss of Stability ................................ 19

§ 3. Bifurcations of Singular Points in Generic Multi-Parameter Families 20
   with Simply Degenerate Linear Parts ................................ 20
   3.1. Principal Families ............................................. 20
   3.2. Bifurcation Diagrams of the Principal Families (3±) in Table 1 21
   3.3. Bifurcation Diagrams with Respect to Weak Equivalence and Phase Portraits of the Principal Families (4±) in Table 1 .................. 21

§ 4. Bifurcations of Singular Points of Vector Fields with a
   Doubly-Degenerate Linear Part ..................................... 23
   4.1. A List of Degeneracies ......................................... 23
   4.2. Two Zero Eigenvalues ......................................... 24
   4.3. Reductions to Two-Dimensional Systems ........................ 24
   4.4. One Zero and a Pair of Purely Imaginary Eigenvalues .......... 25
   4.5. Two Purely Imaginary Pairs .................................... 29
4.6. Principal Deformations of Equations of Difficult Type in Problems with Two Pairs of Purely Imaginary Eigenvalues (Following Žoladek) .................................................. 33

§ 5. The Exponents of Soft and Hard Loss of Stability .................. 35
5.1. Definitions .................................................................. 35
5.2. Table of Exponents ..................................................... 37

Chapter 2. Bifurcations of Limit Cycles .................................. 38

§ 1. Bifurcations of Limit Cycles in Generic One-Parameter Families .. 39
1.1. Multiplier 1 .............................................................. 39
1.2. Multiplier −1 and Period-Doubling Bifurcations ................. 41
1.3. A Pair of Complex Conjugate Multipliers ....................... 42
1.4. Nonlocal Bifurcations in One-Parameter Families of Diffeomorphisms ................................................. 43
1.5. Nonlocal Bifurcations of Periodic Solutions ..................... 45
1.6. Bifurcations Resulting in Destructions of Invariant Tori .... 45

§ 2. Bifurcations of Cycles in Generic Two-Parameter Families with an Additional Simple Degeneracy ................................................. 48
2.1. A List of Degeneracies ................................................ 48
2.2. A Multiplier +1 or −1 with Additional Degeneracy in the Nonlinear Terms .......................... 49
2.3. A Pair of Multipliers on the Unit Circle with Additional Degeneracy in the Nonlinear Terms .... 49

§ 3. Bifurcations of Cycles in Generic Two-Parameter Families with Strong Resonances of Orders q ≠ 4 ............................................... 51
3.1. The Normal Form in the Case of Unipotent Jordan Blocks .... 51
3.2. Averaging in the Seifert and the Möbius Foliations .......... 52
3.3. Principal Vector Fields and their Deformations ............... 53
3.4. Versality of Principal Deformations ................................ 53
3.5. Bifurcations of Stationary Solutions of Periodic Differential Equations with Strong Resonances of Orders q ≠ 4 .. 54

§ 4. Bifurcations of Limit Cycles for a Pair of Multipliers Crossing the Unit Circle at ±i ......................................................... 57
4.1. Degenerate Families .................................................... 57
4.2. Degenerate Families Found Analytically ....................... 59
4.3. Degenerate Families Found Numerically ....................... 59
4.4. Bifurcations in Nondegenerate Families ......................... 60
4.5. Limit Cycles of Systems with a Fourth Order Symmetry .... 60

§ 5. Finitely-Smooth Normal Forms of Local Families ................. 60
5.1. A Synopsis of Results ................................................ 60
5.2. Definitions and Examples .......................................... 62
5.3. General Theorems and Deformations of Nonresonant Germs .. 63
5.4. Reduction to Linear Normal Form ................................ 65
5.5. Deformations of Germs of Diffeomorphisms of Poincaré Type ......................................................... 66
I. Bifurcation Theory

5.6. Deformations of Simply Resonant Hyperbolic Germs ............... 66
5.7. Deformations of Germs of Vector Fields with One Zero Eigenvalue at a Singular Point .................. 68
5.8. Functional Invariants of Diffeomorphisms of the Line ............. 69
5.9. Functional Invariants of Local Families of Diffeomorphisms ...... 70
5.10. Functional Invariants of Families of Vector Fields .............. 71
5.11. Functional Invariants of Topological Classifications of Local Families of Diffeomorphisms of the Line ............... 71

§ 6. Feigenbaum Universality for Diffeomorphisms and Flows ......... 73
6.1. Period-Doubling Cascades ............................................ 73
6.2. Perestroikas of Fixed Points ........................................ 75
6.3. Cascades of n-fold Increases of Period .......................... 75
6.4. Doubling in Hamiltonian Systems .................................. 75
6.5. The Period-Doubling Operator for One-Dimensional Mappings ....................................................... 75
6.6. The Universal Period-Doubling Mechanism for Diffeomorphisms .... 77

Chapter 3. Nonlocal Bifurcations ........................................ 79

§ 1. Degeneracies of Codimension 1. Summary of Results ............... 80
1.1. Local and Nonlocal Bifurcations ................................. 80
1.2. Nonhyperbolic Singular Points ...................................... 82
1.3. Nonhyperbolic Cycles ................................................... 83
1.4. Nontransversal Intersections of Manifolds ....................... 84
1.5. Contours ................................................................. 85
1.6. Bifurcation Surfaces ................................................... 87
1.7. Characteristics of Bifurcations ..................................... 88
1.8. Summary of Results .................................................... 88

§ 2. Nonlocal Bifurcations of Flows on Two-Dimensional Surfaces .... 90
2.1. Semilocal Bifurcations of Flows on Surfaces ..................... 90
2.2. Nonlocal Bifurcations on a Sphere: The One-Parameter Case .... 91
2.3. Generic Families of Vector Fields .................................. 92
2.4. Conditions for Genericity ............................................. 94
2.5. One-Parameter Families on Surfaces different from the Sphere 95
2.6. Global Bifurcations of Systems with a Global Transversal Section on a Torus ........................................ 96
2.7. Some Global Bifurcations on a Klein bottle ...................... 97
2.8. Bifurcations on a Two-Dimensional Sphere: The Multi-Parameter Case ........................................... 98
2.9. Some Open Questions ..................................................... 101

§ 3. Bifurcations of Trajectories Homoclinic to a Nonhyperbolic Singular Point ........................................ 102
3.1. A Node in its Hyperbolic Variables ................................ 103
3.2. A Saddle in its Hyperbolic Variables: One Homoclinic Trajectory ........................................ 103
3.3. The Topological Bernoulli Automorphism ........................................ 104
3.4. A Saddle in its Hyperbolic Variables: Several Homoclinic
   Trajectories ........................................................................... 105
3.5. Principal Families ................................................................. 106
§4. Bifurcations of Trajectories Homoclinic to a Nonhyperbolic Cycle 106
   4.1. The Structure of a Family of Homoclinic Trajectories .............. 107
   4.2. Critical and Noncritical Cycles ........................................... 107
   4.3. Creation of a Smooth Two-Dimensional Attractor ................. 108
   4.4. Creation of Complex Invariant Sets (The Noncritical Case) .... 109
   4.5. The Critical Case ............................................................ 109
   4.6. A Two-Step Transition from Stability to Turbulence ............ 111
   4.7. A Noncompact Set of Homoclinic Trajectories .................... 112
   4.8. Intermittency ..................................................................... 113
   4.9. Accessibility and Nonaccessibility ..................................... 113
   4.10. Stability of Families of Diffeomorphisms .......................... 114
   4.11. Some Open Questions ..................................................... 116
§5. Hyperbolic Singular Points with Homoclinic Trajectories .......... 116
   5.1. Preliminary Notions: Leading Directions and Saddle Numbers
   5.2. Bifurcations of Homoclinic Trajectories of a Saddle that Take
      Place on the Boundary of the Set of Morse-Smale Systems ....... 117
   5.3. Requirements for Genericity ............................................... 118
   5.4. Principal Families in $\mathbb{R}^3$ and their Properties .......... 119
   5.5. Versatility of the Principal Families .................................... 122
   5.6. A Saddle with Complex Leading Direction in $\mathbb{R}^3$ .......... 122
   5.7. An Addition: Bifurcations of Homoclinic Loops Outside the
      Boundary of a Set of Morse-Smale Systems ......................... 126
   5.8. An Addition: Creation of a Strange Attractor upon
      Bifurcation of a Trajectory Homoclinic to a Saddle .............. 127
§6. Bifurcations Related to Nontransversal Intersections ............ 129
   6.1. Vector Fields with No Contours and No Homoclinic
      Trajectories ........................................................................ 129
   6.2. A Theorem on Inaccessibility ............................................ 130
   6.3. Moduli .............................................................................. 131
   6.4. Systems with Contours ..................................................... 132
   6.5. Diffeomorphisms with Nontrivial Basic Sets ....................... 133
   6.6. Vector Fields in $\mathbb{R}^3$ with Trajectories Homoclinic to a Cycle
   6.7. Symbolic Dynamics ......................................................... 134
   6.8. Bifurcations of Smale Horseshoes .................................... 136
   6.9. Vector Fields on a Bifurcation Surface ............................... 138
   6.10. Diffeomorphisms with an Infinite Set of Stable Periodic
      Trajectories ........................................................................ 138
§7. Infinite Nonwandering Sets ...................................................... 139
   7.1. Vector Fields on the Two-Dimensional Torus .......................... 139
   7.2. Bifurcations of Systems with Two Homoclinic Curves of a
      Saddle ............................................................................... 140