THE CHEMICAL PHYSICS OF SOLID SURFACES

EDITED BY

D.A. KING

B.Sc., Ph.D. (Rand), Sc.D. (East Anglia), F.R.S.
1920 Professor of Physical Chemistry,
University of Cambridge

AND

D.P. WOODRUFF

B.Sc. (Bristol), Ph.D., D.Sc. (Warwick)
Professor of Physics,
University of Warwick

VOLUME 7

PHASE TRANSITIONS AND ADSORBATE RESTRUCTURING AT METAL SURFACES

ELSEVIER

AMSTERDAM - LONDON - NEW YORK - TOKYO
1994
Contents

Preface

Chapter 1 (P. Bak and M. Paczuski)

Principles of phase transitions in two-dimensional systems
1. Introduction 1
2. Surface reconstructions 2
 2.1 Au and Pt (2x1) reconstruction: the mystery of the missing row 2
 2.2 The W{100} (√2 x √2) reconstruction 9
3. Commensurate-incommensurate transitions 11
 3.1 More complicated CI transitions: hexagonal incommensurate structures 22
4. Surface roughening 24
5. Roughening and the missing row reconstruction 29
References 32

Chapter 2 (J. Jupille and D.A. King)

Instabilities and adsorbate restructuring at W{100}
1. Introduction 35
2. Clean (√2 x √2)R45°→(1x1) reconstruction 36
 2.1 Structural parameters 37
 2.1.1 Low-temperature phase 37
 2.1.2 The multilayer reconstruction 39
 2.1.3 High-temperature phase 40
 2.1.4 The role of steps 41
 2.2 Dynamics 43
 2.2.1 The high frequency mode 43
 2.2.2 The soft phonon mode 43
 2.2.3 The fractional-order beam 45
 2.3 The nature of the transition 48
 2.3.1 The order-disorder character 49
 2.3.2 The displacive character 50
 2.4 Microscopic mechanism 51
3. Hydrogen-induced reconstruction 55
 3.1 The low-coverage limit 55
 3.1.1 Changes in critical temperature 55
 3.1.2 The symmetry switching 56
Chapter 5 (A.G. Naumovets)

Two-dimensional phase transitions in alkali-metal adlayers

1. Introduction
2. Interactions in alkali-metal adlayers
 2.1 Models of AM bonding on surfaces
 2.2 Lateral interactions
 2.3 Conditions of equilibrium
3. Atomic structure of alkali-metal adlayers
 3.1 Rarefied disordered phases
 3.2 Commensurate phases
 3.2.1 Smooth substrates
 3.2.2 Rough substrates
 3.2.3 Furrowed substrates
 3.3 Incommensurate solid phases
4. Phase transitions and phase diagrams
 4.1 Transitions in fluid (disordered) phases
 4.2 Phase transitions in and between commensurate structures
 4.2.1 Transitions on varying coverage
 4.2.2 Thermal disordering of C-phases
 4.3 Commensurate-to-incommensurate (C-I) phase transitions
 4.4 Phase transitions in incommensurate structures
 4.4.1 Melting transitions
 4.4.2 Rotational transitions
5. Effect of the phase transitions in AM overlayers on physico-
 chemical properties of covered surfaces
 5.1 Work function and other electron properties
 5.2 Binding energy, catalytic activity
 5.3 Surface diffusion
6. Conclusion
Acknowledgements
References
Chapter 6 (M.C. Tringides)

Growth kinetics in two-dimensional phase transitions

1. Introduction 215
 1.1 Non-equilibrium processes 215
 1.2 Searching for growth laws in non-equilibrium processes 216
2 Theoretical background 218
 2.1 Ordering growth laws 218
 2.2 What parameters control ordering growth laws? 219
 2.3 Growth exponents: conserved vs. non-conserved order parameter 221
 2.4 The role of disorder 222
 2.5 Scaling of the non-equilibrium structure factor 223
 2.6 Theoretical techniques to measure non-equilibrium growth laws 224
 2.7 Disordering process 225
 2.8 Chemical potential quenches in non-equilibrium processes 226
 2.9 Diffusion measurements in growth kinetics 227
3. Experimental 229
 3.1 Preliminary experimental considerations 229
 3.2 Techniques for studying growth kinetics—general 230
 3.3 Comparison of diffraction techniques 231
 3.4 Measures of the growth 233
 3.5 Other techniques: Ion scattering, STM, LEEM, atom probe 237
4. Experimental results 239
 4.1 T-θ plane: Single phase region, non-conserved order parameter 239
 4.2 T-θ plane: Growth kinetics in the two-phase region 243
 4.3 T-θ plane: Growth kinetics studies with X-rays 245
 4.4 T-θ plane: Growth of the average domain size vs coverage 245
 4.5 T-θ plane: Growth kinetics in systems with disorder 246
 4.6 T-θ plane: The decay of order 247
 4.7 Why is there saturation in growth kinetics at long times? 248
 4.8 μ-θ plane: Ordering experiments 249
 4.9 Growth kinetics results obtained with other techniques (ion scattering, STM, LEEM, atom probe) 250
5. Conclusions—future problems 252
Acknowledgements 254
References 254
5. Roughening of vicinal surfaces 326
 5.1 The kink free energy and step roughening 326
 5.2 The step roughening transition of fcc \{11n\} surfaces 328
6. Consequences of surface roughening on crystal growth 334
 6.1 Thin film epitaxy 334
 6.2 Crystal growth and ECS 335
References 337

Chapter 9 (A.C. Levi)

Roughening, wetting and surface melting: theoretical considerations

1. Introduction 341
2. Roughening 342
3. Wetting 361
4. Surface melting 369
 Acknowledgements 383
 References 384
5. Appendix: renormalization group analysis 393

Chapter 10 (R.M. Lynden-Bell)

Computer simulation of atomic dynamics on metal surfaces

1. Introduction 409
2. Simulation methods 409
3. Potentials for simulations of metals 411
 3.2 Insights into surface structure 414
 3.3 Limitations of many body potentials 416
4. Simulations of flat surfaces 416
5. Faceting of stepped surfaces 423
6. Adatom diffusion on surfaces 426
7. Diffusion on stepped surfaces 429
8. Interacting surfaces 432
 8.1 Interaction of two flat surfaces 434
 8.2 Fracture of bridges and perfect crystals 436
 8.3 Simulations of tip-flat interactions 439
9. Conclusions 440
References 441

Chapter 11 (L.D. Marks and N. Doraiswamy)

Structural fluctuations in small particles

1. Introduction 443
2. Background 444
3. Experimental evidence for structural fluctuations 449
Chapter 12 (D.P. Woodruff)

Adsorbate-induced restructuring of f.c.c. \{100\} surfaces

1. Introduction 465
2. Adsorbate-induced distortions in 'simple' adsorption structures 467
3. Adsorbate-induced parallel distortions; p4g space group 'clock' reconstructions 477
4. Large mass transport reconstructions; missing rows 487
5. Wider stability of some \{100\} adsorption structures? 493

References 495

Chapter 13 (C.J. Barnes)

Adsorbate induced reconstruction of f.c.c.\{110\} surfaces

1. Introduction 501
2. Alkali metal induced surface reconstruction 503
 2.1 Phenomenological observations 503
 2.2 Geometric structure of the reconstructed (1x2) phase 506
 2.3 Driving force behind the (1x1)\rightarrow(1x2) transition 514
 2.4 Mechanism of coverage-dependent structural transitions 518
 2.5 Alkali induced reconstructions of Au\{110\} 523
 2.6 Reconstruction of f.c.c.\{110\} bimetallic surfaces 525
3. Hydrogen induced surface reconstructions 526
 3.1 Hydrogen induced paired and missing row reconstructions of Ni and Pd\{110\} 526
 3.2 The hydrogen induced missing row reconstruction of Cu\{110\} 534
 3.3 Weak reconstructive adsorption of hydrogen on Rh\{110\} 536
4. Surface reconstruction induced by oxygen, nitrogen, carbon and sulphur 538
 4.1 Oxygen-induced added row reconstructions 538
 4.2 Nitrogen induced (2x3) surface reconstruction: the (2x3) structure on Cu\{110\} 548
 4.3 Surface reconstruction induced by sulphur and carbon 553
5. Molecurarily-induced reconstruction 554
 5.1 The CO-induced "missing-row" reconstruction of Pd\{110\} 554
6. Conclusions 561

Acknowledgements 562
Chapter 14 (F. Besenbacher and I. Stensgaard)

Microscopic studies of adsorbate restructuring at metal surfaces

1. Introduction 573
2. STM imaging 575
3. Adsorbate-mediated reconstructive transformations 580
 3.1 O-induced 'added-row' growth mode on Cu{110} 581
 3.2 The high-coverage c(6x2)O phase on Cu{110} 586
 3.3 O-induced 'added-row' growth on Ni{110} 589
 3.4 O-induced 'missing-row' reconstruction of Cu{100} 594
 3.5 Alkali-induced missing-row reconstructions 597
 3.6 Growth of the 'streaky' (1x2)H phase on Ni{110} 599
 3.7 Adsorption-induced lifting of reconstructions on Pt surfaces 601
 3.8 Adsorption of S on Ni{110}: new phases and atom-resolved surface reactions 604
 3.8.1 The p(4x1)S reconstruction of Ni{110} 604
 3.8.2 Reaction between S and preadsorbed O on Ni{110} 605
 3.9 Complex structures with large unit cells 607
 3.10 A displacive reconstruction: C on Ni{100} 612
4. General trends 613
 4.1 Effective-medium theory 614
 4.2 Oxygen-induced reconstructions 615
 4.3 Hydrogen- and alkali-induced reconstructions of Ni{110} and Cu{110} 617
 4.4 Sulphur-induced reconstructions on Ni{110} 618
 4.5 Growth mode of the adsorbate-induced reconstructions 619
5. Summary 620
6. Acknowledgements 621
References 622

Index 631