Contents

Acknowledgment vii
Preface to the Second Edition ix
Preface to the First Edition xi
List of Frequently Used Symbols xxi

PART I
Basic Linear Theory 1

CHAPTER 1
Ill-Posed Problems 3
§A. Some Examples 3
§B. Lewy's Example 7

CHAPTER 2
Characteristics and Initial-Value Problems 13

CHAPTER 3
The One-Dimensional Wave Equation 17

CHAPTER 4
Uniqueness and Energy Integrals 26

CHAPTER 5
Holmgren's Uniqueness Theorem 33

CHAPTER 6
An Initial-Value Problem for a Hyperbolic Equation 39

CHAPTER 7
Distribution Theory 45
§A. A Cursory View 45
§B. Fundamental Solutions 52
§C. Appendix 61
<table>
<thead>
<tr>
<th>CHAPTER 8</th>
<th>Second-Order Linear Elliptic Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>§A.</td>
<td>The Strong Maximum Principle</td>
</tr>
<tr>
<td>§B.</td>
<td>A-Priori Estimates</td>
</tr>
<tr>
<td>§C.</td>
<td>Existence of Solutions</td>
</tr>
<tr>
<td>§D.</td>
<td>Elliptic Regularity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 9</th>
<th>Second-Order Linear Parabolic Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>§A.</td>
<td>The Heat Equation</td>
</tr>
<tr>
<td>§B.</td>
<td>Strong Maximum Principles</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART II</th>
<th>Reaction–Diffusion Equations</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 10</th>
<th>Comparison Theorems and Monotonicity Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>§A.</td>
<td>Comparison Theorems for Nonlinear Equations</td>
</tr>
<tr>
<td>§B.</td>
<td>Upper and Lower Solutions</td>
</tr>
<tr>
<td>§C.</td>
<td>Applications</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 11</th>
<th>Linearization</th>
</tr>
</thead>
<tbody>
<tr>
<td>§A.</td>
<td>Spectral Theory for Self-Adjoint Operators</td>
</tr>
<tr>
<td>§B.</td>
<td>Linearized Stability</td>
</tr>
<tr>
<td>§C.</td>
<td>Appendix: The Krein–Rutman Theorem</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 12</th>
<th>Topological Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>§A.</td>
<td>Degree Theory in \mathbb{R}^n</td>
</tr>
<tr>
<td>§B.</td>
<td>The Leray–Schauder Degree</td>
</tr>
<tr>
<td>§C.</td>
<td>An Introduction to Morse Theory</td>
</tr>
<tr>
<td>§D.</td>
<td>A Rapid Course in Topology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 13</th>
<th>Bifurcation Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>§A.</td>
<td>The Implicit Function Theorem</td>
</tr>
<tr>
<td>§B.</td>
<td>Stability of Bifurcating Solutions</td>
</tr>
<tr>
<td>§C.</td>
<td>Some General Bifurcation Theorems</td>
</tr>
<tr>
<td>§D.</td>
<td>Spontaneous Bifurcation; An Example</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 14</th>
<th>Systems of Reaction–Diffusion Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>§A.</td>
<td>Local Existence of Solutions</td>
</tr>
<tr>
<td>§B.</td>
<td>Invariant Regions</td>
</tr>
<tr>
<td>§C.</td>
<td>A Comparison Theorem</td>
</tr>
<tr>
<td>§D.</td>
<td>Decay to Spatially Homogeneous Solutions</td>
</tr>
<tr>
<td>§E.</td>
<td>A Lyapunov Function for Contracting Rectangles</td>
</tr>
<tr>
<td>§F.</td>
<td>Applications to the Equations of Mathematical Ecology</td>
</tr>
</tbody>
</table>

| §F. | Applications to the Equations of Mathematical Ecology | 230 |
PART III
The Theory of Shock Waves

CHAPTER 15
Discontinuous Solutions of Conservation Laws
§A. Discontinuous Solutions
§B. Weak Solutions of Conservation Laws
§C. Evolutionary Systems
§D. The Shock Inequalities
§E. Irreversibility

CHAPTER 16
The Single Conservation Law
§A. Existence of an Entropy Solution
§B. Uniqueness of the Entropy Solution
§C. Asymptotic Behavior of the Entropy Solution
§D. The Riemann Problem for a Scalar Conservation Law

CHAPTER 17
The Riemann Problem for Systems of Conservation Laws
§A. The p-System
§B. Shocks and Simple Waves
§C. Solution of the General Riemann Problem

CHAPTER 18
Applications to Gas Dynamics
§A. The Shock Inequalities
§B. The Riemann Problem in Gas Dynamics
§C. Interaction of Shock Waves

CHAPTER 19
The Glimm Difference Scheme
§A. The Interaction Estimate
§B. The Difference Approximation
§C. Convergence

CHAPTER 20
Riemann Invariants, Entropy, and Uniqueness
§A. Riemann Invariants
§B. A Concept of Entropy
§C. Solutions with "Big" Data
§D. Instability of Rarefaction Shocks
§E. Oleinik's Uniqueness Theorem

CHAPTER 21
Quasi-Linear Parabolic Systems
§A. Gradient Systems
§B. Artificial Viscosity
§C. Isentropic Gas Dynamics
PART IV
The Conley Index 445

CHAPTER 22
The Conley Index 447
§A. An Impressionistic Overview 448
§B. Isolated Invariant Sets and Isolating Blocks 458
§C. The Homotopy Index 472

CHAPTER 23
Index Pairs and the Continuation Theorem 478
§A. Morse Decompositions and Index Pairs 479
§B. The Conley Index of an Isolated Invariant Set 486
§C. Continuation 494
§D. Some Further Remarks 502

CHAPTER 24
Travelling Waves 507
§A. The Structure of Weak Shock Waves 508
§B. The Structure of Magnetohydrodynamic Shock Waves 514
§C. Periodic Travelling Waves 521
§D. Stability of Steady-State Solutions 530
§E. Instability of Equilibrium Solutions of the Neumann Problem 542
§F. Appendix: A Criterion for Nondegeneracy 549

CHAPTER 25
Recent Results 553
Section I. Reaction–Diffusion Equations 553
§A. Stability of the Fitz-Hugh–Nagumo Travelling Pulse 553
§B. Symmetry-Breaking 555
§C. A Bifurcation Theorem 559
§D. Equivariant Conley Index 563
§E. Application to Semilinear Elliptic Equations 566
Concluding Remarks 568
Section II. Theory of Shock Waves 569
§A. Compensated Compactness 569
§B. Stability of Shock Waves 576
§C. Miscellaneous Results 581
Section III. Conley Index Theory 583
§A. The Connection Index 583
§B. Conley’s Connection Matrix 586
§C. Miscellaneous Results 590
Section IV. Stability of Travelling Waves—A Topological Approach 590
§A. Introduction 590
§B. The Search for $\sigma_j(L)$ 592
§C. Applications to Fast–Slow Systems 598
References 603

Bibliography 607
Author Index 621
Subject Index 625