Principles and Applications of Electrochemistry

Fourth edition

D. R. CROW
Professor of Electrochemistry and Dean of Research
University of Wolverhampton

BLACKIE ACADEMIC & PROFESSIONAL
An Imprint of Chapman & Hall
London • Glasgow • Weinheim • New York • Tokyo • Melbourne • Madras
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7</td>
<td>Buffer systems</td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>3.7.1</td>
<td>The Henderson–Hasselbalch equation</td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Efficiency of buffer systems: buffer capacity</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>3.8</td>
<td>Operation and choice of visual indicators</td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Functioning of indicators</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Titrimetric practice</td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>Problems</td>
<td></td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>4</td>
<td>The conducting properties of electrolytes</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>4.1</td>
<td>The significance of conductivity data</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Measurement of conductivity</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Molar conductivity</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Empirical variation of molar conductivity of electrolyte solutions with concentration</td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>4.1.4</td>
<td>The independent migration of ions</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>4.2</td>
<td>Conductivity and the transport properties of ions</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Diffusion and conductivity: the Nernst–Einstein equation</td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Ion speeds and conductivity: the Einstein and Stokes–Einstein equations</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>4.3</td>
<td>Rationalization of relationships between molar conductivity and electrolyte concentration</td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Strong, completely dissociated electrolytes</td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Weak, incompletely dissociated electrolytes</td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Electrolyte systems showing ion pairing</td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>4.4</td>
<td>Conductivity at high field strengths and high frequency of alternation of the field</td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>4.5</td>
<td>Electrical migration and transport numbers</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>Problems</td>
<td></td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>5</td>
<td>Interfacial phenomena: double layers</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>5.1</td>
<td>The interface between conducting phases</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>5.2</td>
<td>The electrode double layer</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>5.3</td>
<td>Polarized and non-polarized electrodes</td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>5.4</td>
<td>Electrocapillarity: the Lippmann equation</td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Variation of charge with applied potential at a mercury/solution interface</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Specific adsorption</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>5.5</td>
<td>Models for the double layer</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Distribution of charge according to Helmholtz, Gouy and Chapman, and Stern</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>5.5.2</td>
<td>The diffuse double layer</td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>5.5.3</td>
<td>The zeta potential</td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>5.6</td>
<td>Electrokinetic phenomena</td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Electro-osmosis</td>
<td></td>
<td>79</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Streaming potential</td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Electrophoresis</td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>5.7</td>
<td>Behaviour of colloidal systems</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Stability of colloidal dispersions</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Colloidal electrolytes</td>
<td></td>
<td>86</td>
</tr>
<tr>
<td>5.7.3</td>
<td>Polyelectrolytes</td>
<td></td>
<td>86</td>
</tr>
<tr>
<td>Problems</td>
<td></td>
<td></td>
<td>87</td>
</tr>
</tbody>
</table>
6 Electrode potentials and electrochemical cells

6.1 Comparison of chemical and electrochemical reactions 88
6.2 Electrode potentials: their origin and significance 89
 6.2.1 Types of potential operating at the electrode/solution interface 90
 6.2.2 Measurable and non-measurable quantities 93
6.3 Electrode potentials and activity: the Nernst equation 93
6.4 Disturbance of the electrode equilibrium 96
 6.4.1 Why electrons transfer 96
 6.4.2 The distinction between fast and slow systems 96
6.5 The hydrogen scale and the IUPAC convention 102
 6.5.1 The standard hydrogen electrode 103
 6.5.2 Electrode potential and cell emf sign conventions 105
 6.5.3 Calculation of cell emf values from tabulated data 108
6.6 Other reference electrodes 108
6.7 Concentration cells and emf measurements 111
6.8 Concentration cells without liquid junctions 112
 6.8.1 Cells with amalgam electrodes 112
 6.8.2 Cells with gas electrodes operating at different pressures 113
 6.8.3 Concentration cells without transference 114
6.9 Concentration cells with liquid junctions 116
 6.9.1 Cells with a liquid junction potential 116
 6.9.2 Cells with eliminated liquid junction potentials 118
 6.9.3 Calculation of liquid junction potentials 119
6.10 Membrane equilibria 120
 6.10.1 Membrane potentials 120
 6.10.2 Dialysis 124
 6.10.3 Ion-exchange resins 125
Problems 126

7 Electrode processes

7.1 Equilibrium and non-equilibrium electrode potentials 129
 7.1.1 Current–potential relationships for fast and slow systems 129
 7.1.2 Mass transfer and electron-exchange processes 130
 7.1.3 Types of mass transfer 132
7.2 The kinetics of electrode processes: the Butler–Volmer equation 133
7.3 The relationship between current density and overvoltage: the Tafel equation 138
7.4 The modern approach to the interpretation of electrode reactions 140
7.5 Electrolysis and overvoltage 143
 7.5.1 Activation overvoltage (\(\eta_A \)) 144
 7.5.2 Resistance overvoltage (\(\eta_R \)) 144
 7.5.3 Concentration overvoltage (\(\eta_C \)) 144
 7.5.4 Summary of overvoltage phenomena and their distinguishing features 147
7.6 Hydrogen and oxygen overvoltage 148
 7.6.1 Decomposition potentials and overvoltage 148
 7.6.2 Individual electrode overvoltages 149
7.7 Theories of hydrogen overvoltage 151
Problems 152

Part II Applications

8 Determination and investigation of physical parameters 157

8.1 Applications of the Debye–Hückel equation 157
 8.1.1 Determination of thermodynamic equilibrium constants 157
 8.1.2 Dependence of reaction rates on ionic strength 157
CONTENTS

8.2 Determination of equilibrium constants by conductivity measurements 159
 8.2.1 Solubilities of sparingly soluble salts 159
 8.2.2 The ionic product of self-ionizing solvents 160
 8.2.3 Dissociation constants of weak electrolytes, e.g. weak acids 160
8.3 Thermodynamics of cell reactions 161
8.4 Determination of standard potentials and mean ion activity coefficients 162
8.5 The determination of transport numbers 164
 8.5.1 Determination by the Hittorf method 165
 8.5.2 Determination by moving boundary methods 170
 8.5.3 Determination using cell emf 173
 8.5.4 Interpretation and application of transport numbers 173
8.6 Determination of equilibrium constants by measurements of potential 174
 8.6.1 Dissociation constants of weak acids 174
 8.6.2 The ionization constant of water 179
 8.6.3 Solubility products 180
 8.6.4 Equilibrium constants of redox reactions 181
 8.6.5 Formation (stability) constants of metal complexes 182
8.7 The experimental determination of pH 183
 8.7.1 The hydrogen electrode 183
 8.7.2 The glass electrode 185
Problems 186

9 Electroanalytical techniques 189

9.1 What constitutes electroanalysis? 189
9.2 Conductimetric titrations 189
9.3 Potentiometric titrations 190
 9.3.1 Zero current potentiometry 190
 9.3.2 Constant current potentiometry 193
 9.3.3 Potentiometry with two indicator electrodes 194
9.4 Classical voltammetric techniques 196
 9.4.1 Polarography 197
 9.4.2 Characteristics of diffusion-controlled polarographic waves 200
 9.4.3 Amperometric titrations 204
 9.4.4 Wave characteristics and the mechanism of electrochemical processes 205
9.5 Modern polarographic methods 209
 9.5.1 Variation of current during the life of mercury drops 209
 9.5.2 Pulse polarography 211
 9.5.3 Differential pulse polarography 211
 9.5.4 Stripping voltammetry 213
9.6 Voltammetry based on forced controlled convection 214
 9.6.1 Rotating disc voltammetry 214
 9.6.2 The ring-disc electrode 214
9.7 Cyclic voltammetry 215
9.8 Ultrimicroelectrodes 216
9.9 Electrogravimetry 217
9.10 Coulometric methods 217
Problems 219

10 Electrochemical sensors 221

10.1 Ion-selective electrodes 221
 10.1.1 Glass membrane electrodes 221
 10.1.2 Solid-state electrodes 222
 10.1.3 Liquid membrane electrodes 223
10.2 Problems with ion-selective electrodes 223
10.3 Chemically modified electrodes 225
CONTENTS

10.4 Gas-sensing electrodes ... 226
10.5 Enzyme electrodes ... 227
10.6 Sensors based on modified metal oxide field effect transistors (MOSFETs) ... 229
10.7 The wall-jet ring-disc electrode (WJRDE) 230

11 The exploitation of electrode processes 233

11.1 Mixed potentials and double electrodes 233
 11.1.1 Pourbaix diagrams .. 233
 11.1.2 Corrosion prevention 236

11.2 Electrochemical processes as sources of energy 239
 11.2.1 Primary cells ... 239
 11.2.2 Secondary cells ... 241
 11.2.3 Fuel cells ... 246

11.3 Electrocatalysis and electrosynthesis 249
 11.3.1 Anodically initiated process 251
 11.3.2 Cathodically initiated process 252

11.4 Electrochemistry on an industrial scale 252

Problems .. 254

Further Reading .. 256

Solutions to problems ... 259

Appendix I .. 271

Appendix II .. 274

Appendix III .. 275

Appendix IV .. 277

Index ... 279