CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>ix</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xi</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>References</td>
<td>5</td>
</tr>
<tr>
<td>2 Criteria of Aromaticity and Antiaromaticity</td>
<td>6</td>
</tr>
<tr>
<td>2.1 Demands on these Criteria</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Energetic Criteria</td>
<td>7</td>
</tr>
<tr>
<td>2.2.1 Various Types of Resonance Energies</td>
<td>7</td>
</tr>
<tr>
<td>2.2.2 Hückel Resonance Energy</td>
<td>10</td>
</tr>
<tr>
<td>2.2.3 Dewar’s Resonance Energy</td>
<td>11</td>
</tr>
<tr>
<td>2.2.4 Hess–Schaad Resonance Energies</td>
<td>12</td>
</tr>
<tr>
<td>2.2.5 Topological Resonance Energy</td>
<td>14</td>
</tr>
<tr>
<td>2.2.6 Conjugated Circuits Model</td>
<td>19</td>
</tr>
<tr>
<td>2.2.7 Structure–Resonance Theory and Some Related Models</td>
<td>24</td>
</tr>
<tr>
<td>2.2.8 PMO Method of the Dewar Resonance Energy Estimation</td>
<td>28</td>
</tr>
<tr>
<td>2.2.9 Estimation of Energies of Aromatic Stabilization and Antiaromatic Destabilization from the Energies of Isodesmic, Homodesmotic, and Hyperhomodesmotic Reactions</td>
<td>29</td>
</tr>
<tr>
<td>2.2.10 Comparison Between Energetic Criteria</td>
<td>35</td>
</tr>
<tr>
<td>2.3 Structural Criteria</td>
<td>38</td>
</tr>
<tr>
<td>2.3.1 Distinguishing Characteristics in the Geometry of Aromatic and Antiaromatic Molecules</td>
<td>38</td>
</tr>
</tbody>
</table>
2.3.2 Indices of Aromaticity Based on Estimates of Bond Length Alternation in a Ring, 48
2.3.3 Aromaticity Gauged by Stability of a High-Symmetry Structure Against Distortion into Kekule-Type Structures with Bond Alternation, 54
2.3.4 Effects of Nonplanarity, 60
2.4 Magnetic Criteria, 63
 2.4.1 Concept of the Ring Current, 63
 2.4.2 Magnetic Susceptibility Exaltation and Anisotropy, 67
 2.4.3 Nuclear Magnetic Resonance Chemical Shifts, 71
2.5 Other Criteria of Aromaticity and Antiaromaticity, 74
 2.5.1 Retention of the Structural Type, 75
 2.5.1.1 Empirical Resonance Energies, 75
 2.5.1.2 Reactivity Indices as a Measure of Aromaticity, 80
 2.5.2 Specific Features of the Electron Distribution, 85
 2.5.3 Anisotropic Optical Polarizability as an Index of Aromaticity, 88
2.6 Interrelation Between Various Types of Aromaticity Indices, 89
References, 92

3 Delocalization Modes and Electron-Count Rules

 3.1 Aromaticity Types Stemming from the Ribbon Delocalization in a Cyclic System with Planar or Distorted Planar Geometry of a Ring, 104
3.2 Aromaticity Types Due to Surface Delocalization, 114
3.3 Volume Delocalization, 115
3.4 Electron-Count Rules: The Hückel Rule, 116
 3.4.1 Formulation of the Hückel Rule, 117
 3.4.2 Relation of the Hückel Rule with the Energetic and Magnetic Criteria of Aromaticity and with the Reactivity of Cyclic Conjugated Molecules, 121
 3.4.3 Limits of Applicability of the Hückel Rule, 123
 3.4.4 The Generalized Hückel Rule, 127
References, 130

4 Annulenes, Monocyclic Conjugated Ions, and Annulenoannulenes

 4.1 Annulenes, 133
 4.1.1 Benzene and Cyclobutadiene, 133
 4.1.1.1 Ground-State Structures and Their Thermal Automerizations, 133
 4.1.1.2 The Excited States: Structures and Aromaticity, 142
 4.1.1.3 Stability Relative to Valence Isomers, 149
 4.1.1.4 Dications and Dianions of Benzene and Cyclobutadiene, 157
 4.1.2 Cyclooctatetraene and [10]Annulene, 165
CONTENTS

4.1.2.1 Structures of the Ground and Lowest Excited States, 165
4.1.2.2 COT's Dication and Dianion, 173
4.1.3 [18]Annulene, 175
4.2 Monocyclic Aromatic and Antiaromatic Ions, 177
4.2.1 Cyclopropenyl Cation and Cyclopropenide Anion, 177
4.2.2 Cyclopentadienyl Cation and Cyclopentadienide Anion, 183
4.2.3 Tropylium Cation and Cycloheptatrienide Anion, 186
4.2.4 Cyclononatetraenyl Cation and Cyclononatetraenide Anion, 188
4.3 Annulenoannulenes, 190
References, 207

5 Heteroaromaticity

5.1 General Trends Observed in the Change of Aromatic Character due to Heterosubstitution, 217
5.2 Aromaticity and the Trend Toward Pyramidalization of the Heteroatom, 225
References, 227

6 Homoaromaticity

6.1 General Outline, 230
6.2 Qualitative Approaches, 232
6.3 Homoaromatic Cations, 235
6.3.1 Homotropylium Cation, 235
6.3.1.1 Structure of the Homotropylium Cation, 235
6.3.1.2 Energetic Criteria, 239
6.3.2 Other Homoaromatic Cations: Does Homoantiaromaticity Exist?, 241
6.4 Does Homoaromaticity Take Place for Anions?, 243
6.5 Can Neutral Molecules Manifest Homoaromaticity?, 246
References, 249

7 σ-Aromaticity

7.1 σ-Delocalization and σ-Conjugation, 252
7.2 σ-Aromaticity, 254
7.2.1 Cyclopropane: The Energy of Its σ-Aromatic Stabilization, 255
7.2.2 Cyclopropane: The Surface σ-Delocalization, 259
References, 207
CONTENTS

7.2.3 Cyclopropane and Benzene as Aromatic Analogs, 260
7.2.4 σ-Aromaticity of Five-Membered Ring Systems, 262
References, 264

8 In-Plane and Radial Aromaticity 267
References, 277

9 Three-Dimensional Aromaticity 279
9.1 Resonance Energies of Polyhedral Organometallics, 279
9.2 Pyramidal Organic Molecules and Ions, 281
9.3 Three-Dimensional Aromaticity and Electron Counting in Clusters, 291
References, 294

10 Spherical Aromaticity 298
References, 303

11 Is the Physical Nature of Aromaticity Known? 305
References, 309

Index 311