Stefan Hüfner

Photoelectron Spectroscopy
Principles and Applications

With 352 Figures

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest
6. Photoemission of Valence Electrons from Metallic Solids in the One-Electron Approximation

6.1 Theory of Photoemission: A Summary of the Three-Step Model

6.2 Discussion of the Photocurrent

6.2.1 Kinematics of Internal Photoemission in a Polycrystalline Sample

6.2.2 Primary and Secondary Cones in the Photoemission from a Real Solid

6.2.3 Angle-Integrated and Angle-Resolved Data Collection

6.3 Photoemission from the Semi-Infinite Crystal: The Inverse LEED Formalism

6.3.1 Band Structure or Angle-Resolved UPS Regime

6.3.2 XPS Regime

6.3.3 Surface Emission

6.3.4 One-Step Calculations

6.4 Thermal Effects

6.5 Dipole Selection Rules for Direct Optical Transitions

7. Bandstructure and Angular-Resolved Photoemission Spectra

7.1 Free-Electron Final-State Model

7.2 Methods Employing Calculated Band Structures

7.3 Methods for the Absolute Determination of the Crystal Momentum

7.3.1 Triangulation or Energy Coincidence Method

7.3.2 Bragg Plane Method: Variation of External Emission Angle at Fixed Photon Frequency (Disappearance/Appearance Angle Method)

7.3.3 Bragg Plane Method: Variation of Photon Energy at Fixed Emission Angle (Symmetry Method)

7.3.4 The Surface Emission Method and Electron Damping

7.3.5 The Fermi Surface Method

7.3.6 Intensities and Their Use in Band Structure Determinations

7.3.7 Summary

7.4 Experimental Band Structures

7.4.1 Two-Dimensional Systems

7.4.2 Three-Dimensional Solids: Metals and Semiconductors

7.4.3 UPS Band Structures and XPS Density of States

7.5 A Comment

8. Surface States, Surface Effects

8.1 Theoretical Considerations

8.2 Experimental Results on Surface States

8.3 Surface Core-Level Shifts