ORGANIC REACTIONS
EQUILIBRIA, KINETICS AND MECHANISM

F. Ruff
Department of Organic Chemistry, Eötvös University, P.O. Box 32,
H-1518 Budapest 112, Hungary

L.G. Csizmadia
Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A1

ELSEVIER
CONTENTS

1. INTRODUCTION
 1.1 PREAMBLE 1
 1.2 SCOPE 2

2. NONKINETIC METHODS FOR THE ELUCIDATION OF REACTION MECHANISMS
 2.1 STOICHIOMETRY AND REACTION MECHANISMS 4
 2.2 STRUCTURE OF PRODUCTS 5
 2.3 STRUCTURE OF INTERMEDIATES 8
 2.3.1 Isolation of intermediates 8
 2.3.2 Detection and structure determination of intermediates 9
 2.3.3 Trapping of intermediates 14
 2.4 STEREOCHEMICAL EXPERIMENTS 16
 2.5 ISOTOPE-LABELED EXPERIMENTS 19
 2.6 CROSSOVER EXPERIMENTS 21
 2.7 PROBLEMS 29
 2.8 REFERENCES 36

3. ENERGETICS OF CHEMICAL REACTIONS
 3.1 NOMENCLATURE OF THERMODYNAMIC POTENTIAL FUNCTIONS 39
 3.2 THERMODYNAMIC REQUIREMENTS FOR CHEMICAL REACTIONS 40
 3.3 KINETIC REQUIREMENTS FOR CHEMICAL REACTIONS 44
 3.4 THE PRINCIPLE OF MICROSCOPIC REVERSIBILITY 49
 3.5 KINETIC AND THERMODYNAMIC CONTROL 50
 3.6 PROBLEMS 52
 3.7 REFERENCES 55

4. KINETICS OF ELEMENTARY REACTIONS
 4.1 BASIC PRINCIPLES OF REACTION KINETICS 57
 4.2 THE INTEGRATED RATE EQUATION 61
 4.3 PSEUDO-ORDERS OF SIMPLIFIED RATE EQUATIONS 67
 4.4 NUMERICAL DETERMINATION OF REACTION ORDER AND RATE CONSTANTS FROM EXPERIMENTAL DATA 69
 4.4.1 Reaction order from differential rate equations 70
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.2</td>
<td>The method of initial rates</td>
<td>74</td>
</tr>
<tr>
<td>4.4.3</td>
<td>The method of half-life times</td>
<td>75</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Reaction orders and rate constants from integrated rate equations</td>
<td>76</td>
</tr>
<tr>
<td>4.4.5</td>
<td>Rate-constant determination from physical measurements</td>
<td>77</td>
</tr>
<tr>
<td>4.5</td>
<td>Problems</td>
<td>81</td>
</tr>
<tr>
<td>4.6</td>
<td>References</td>
<td>88</td>
</tr>
<tr>
<td>5.1</td>
<td>Reversible Reactions</td>
<td>89</td>
</tr>
<tr>
<td>5.2</td>
<td>Parallel Reactions</td>
<td>93</td>
</tr>
<tr>
<td>5.3</td>
<td>Consecutive Reactions</td>
<td>99</td>
</tr>
<tr>
<td>5.4</td>
<td>Approximate Methods for Analyzing Complex Reactions</td>
<td>103</td>
</tr>
<tr>
<td>5.4.1</td>
<td>The preequilibrium approximation (PEA)</td>
<td>103</td>
</tr>
<tr>
<td>5.4.2</td>
<td>The steady-state approximation (SSA)</td>
<td>105</td>
</tr>
<tr>
<td>5.5</td>
<td>Conclusions</td>
<td>108</td>
</tr>
<tr>
<td>5.6</td>
<td>Examples</td>
<td>108</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Molecular rearrangement; use of PEA</td>
<td>109</td>
</tr>
<tr>
<td>5.6.2</td>
<td>The S_N1 reaction mechanism; use of SSA</td>
<td>111</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Aromatic nitration; use of SSA</td>
<td>114</td>
</tr>
<tr>
<td>5.7</td>
<td>Problems</td>
<td>116</td>
</tr>
<tr>
<td>5.8</td>
<td>References</td>
<td>129</td>
</tr>
<tr>
<td>6.1</td>
<td>Temperature Dependence of Chemical Equilibria</td>
<td>131</td>
</tr>
<tr>
<td>6.2</td>
<td>Temperature Dependence of Reaction Rates</td>
<td>132</td>
</tr>
<tr>
<td>6.3</td>
<td>Collision Theory</td>
<td>136</td>
</tr>
<tr>
<td>6.4</td>
<td>Transition-State Theory</td>
<td>139</td>
</tr>
<tr>
<td>6.5</td>
<td>Structure of Activated Complexes</td>
<td>142</td>
</tr>
<tr>
<td>6.6</td>
<td>Entropy of Activation</td>
<td>143</td>
</tr>
<tr>
<td>6.7</td>
<td>Enthalpy of Activation</td>
<td>147</td>
</tr>
<tr>
<td>6.8</td>
<td>The Isokinetic Relationship</td>
<td>148</td>
</tr>
<tr>
<td>6.9</td>
<td>Volume of Activation</td>
<td>150</td>
</tr>
<tr>
<td>6.10</td>
<td>Problems</td>
<td>153</td>
</tr>
<tr>
<td>6.11</td>
<td>References</td>
<td>159</td>
</tr>
<tr>
<td>7.1</td>
<td>The Hammett Equation</td>
<td>161</td>
</tr>
<tr>
<td>7.2</td>
<td>The Linear Free-Enthalpy Relationship</td>
<td>168</td>
</tr>
<tr>
<td>7.3</td>
<td>Application of the Hammett Equation to Multistep Reactions</td>
<td>170</td>
</tr>
</tbody>
</table>
7.4 THE σ^+, σ^-, AND σ^0 SUBSTITUENT CONSTANTS; THE YUKAWA–TSUNO
EQUATION 177

7.5 SEPARATION OF INDUCTIVE AND RESONANCE EFFECTS 180
7.5.1 Taft's dual-parameter equation 180
7.5.2 The Swain–Lupton treatment of substituent constants 186
7.5.3 The Drago–Dadmun equation 187

7.6 SEPARATION OF ELECTRONIC AND STERIC EFFECTS 188
7.6.1 The Taft equation 188
7.6.2 The ortho effect 192

7.7 PROBLEMS 195

7.8 REFERENCES 207

8. ISOTOPE EFFECTS
8.1 ISOTOPE EFFECTS ON EQUILIBRIA 210
8.2 THEORY OF KINETIC ISOTOPE EFFECTS 215
8.3 PRIMARY KINETIC ISOTOPE EFFECTS 222
8.3.1 Examples of the primary kinetic isotope effect 225
8.3.2 The tunneling effect 228
8.3.3 Heavy-atom isotope effects 231

8.4 SECONDARY KINETIC ISOTOPE EFFECTS 233
8.4.1 The α-effect 233
8.4.2 The β-effect 236
8.4.3 Steric and inductive isotope effects 238

8.5 SOLVENT ISOTOPE EFFECT 239
8.5.1 The isotopic fractionation factor 240
8.5.2 Examples of the solvent isotope effect 244

8.6 PROBLEMS 248
8.7 REFERENCES 255

9. ENVIRONMENTAL EFFECTS
9.1 THE STRUCTURE OF LIQUIDS 257
9.2 SOLVATION 259
9.3 SOLVENT EFFECTS IN CHEMICAL EQUILIBRIA 264
9.4 SOLVENT EFFECTS IN CHEMICAL KINETICS 267
9.5 SOLVENT EFFECTS ON REACTION RATES 269
9.5.1 Reactions of neutral, apolar molecules 271
9.5.2 Reactions of neutral, dipolar molecules 275
9.5.3 Reactions between ions and neutral molecules 280
9.5.4 Reactions involving two ions 281

9.6 SPECIFIC SOLVATION EFFECTS ON REACTION RATES 283
9.6.1 Solvation of anions 283
9.6.2 Ion-pair formation and cation solvation 285
9.7 Empirical Solvent-Polarity Parameters 289
9.7.1 Parameters based on kinetic measurements 290
9.7.2 The Z parameter 292
9.7.3 The E_T parameter 293
9.7.4 The S parameter 294
9.7.5 The π^* parameter 294
9.7.6 The β and α scales 295
9.7.7 The donor number (DN) and acceptor number (AN) 295
9.7.8 Interdependence of empirical parameters 297
9.8 Salt Effects 298
9.8.1 The influence of ionic strength on the activity coefficient 299
9.8.2 Primary salt effect 300
9.8.3 Secondary salt effect 304
9.9 Problems 306
9.10 References 313

10. Acids, Bases, Electrophiles, and Nucleophiles
10.1 Strengths of Brønsted Acids and Bases 318
10.2 Structural Effects on Brønsted Acidity and Basicity 326
10.2.1 Inductive and field effects 326
10.2.2 Resonance effects 328
10.2.3 Effect of electronegativity, size, and hybridization 331
10.2.4 Steric effect 333
10.2.5 Effect of hydrogen bonding 336
10.3 Solvent Effects on Acidity and Basicity 336
10.3.1 Acidity and basicity in gas phase 336
10.3.2 Acidity and basicity in solution 338
10.4 Acidity of Solvents and Acidity Functions 341
10.4.1 Acid–base reactions in strongly acidic media 341
10.4.2 Acid–base reactions in strongly basic media 349
10.5 Very Weak Acids 350
10.6 Superacids 352
10.7 Lewis Acids and Lewis Bases 356
10.8 Nucleophiles and Electrophiles 360
10.8.1 Application of HSAB principle 360
10.8.2 Ambident nucleophiles 362
10.8.3 The quantification of nucleophilicity 364
10.9 Problems 371
10.10 REFERENCES 376

11. HOMOGENEOUS CATALYSIS

11.1 ACID-BASE CATALYSIS 382
11.1.1 Specific and general acid–base catalysis 383
11.1.2 Kinetics of typical acid- or base-catalyzed reactions 384
11.1.3 Examples of typical acid- and base-catalyzed reactions 388
11.1.4 pH-Dependence of reaction rates involving specific acid–base catalysis 391

11.2 RATES OF PROTON-TRANSFER REACTIONS 396

11.3 BRØNSTED'S LAW OF CATALYSIS 402

11.4 REACTIONS IN STRONGLY ACIDIC MEDIA 407
11.4.1 The Zucker–Hammett hypothesis 409
11.4.2 The Bunnett and the Bunnett–Olsen equations 411
11.4.3 The excess acidity method 417

11.5 NUCLEOPHILIC CATALYSIS 419

11.6 ELECTROPHILIC CATALYSIS 422

11.7 NEIGHBORING GROUP PARTICIPATION AND INTRAMOLECULAR CATALYSIS 428

11.8 MICELLAR CATALYSIS 436

11.9 ENZYMIC CATALYSIS 437

11.10 PROBLEMS 439

11.11 REFERENCES 449

SUBJECT INDEX 453