CHAPTER V
DEFINITE INTEGRAL EXPRESSIONS FOR THE BESSEL FUNCTIONS. ASYMPTOTIC EXPANSIONS

§ 1. Bessel's Second Integral. § 2. Contour Integral Expressions—Solution of Bessel's Equation—Expressions for $J_n(x)$ and $K_n(x)$—Expression for $F_n(x)$. § 3. The Asymptotic Expansions—Asymptotic Expansion of $K_n(x)$—Asymptotic Expansion of $J_n(x)$—Asymptotic Expansions of the Ber and Bei Functions. § 4. Asymptotic Expressions for the Bessel Functions. § 5. Asymptotic Expressions for the Bessel Functions, regarded as Functions of their Orders.

Examples

CHAPTER VI
DEFINITE INTEGRALS INVOLVING BESSEL FUNCTIONS

Examples

CHAPTER VII
THE ZEROS OF THE BESSEL FUNCTIONS

§ 1. Theorems on the Zeros of the Bessel Functions (Theorems I.-XV.). § 2. The Zeros of $J_n(x)$—Stokes' Method of Calculating the Zeros of $J_n(x)$. § 3. Zeros of the Bessel Functions regarded as Functions of their Orders.

Examples

CHAPTER VIII
FOURIER-BESSEL EXPANSIONS AND INTEGRALS

Examples

CHAPTER IX
RELATIONS BETWEEN BESSEL FUNCTIONS AND LEGENDRE FUNCTIONS. GREEN'S FUNCTION

§ 1. Bessel Functions as Limiting Cases of Legendre Functions. § 2. Legendre Functions as Integrals involving Bessel Functions. § 3. Dougall's Expressions for the Green's Function.—Green's Function. Case I. Whole of Space. Case II. Space bounded by two
parallel planes. Case III. Space bounded externally by a cylinder. Case IV. Space bounded by two axial planes. Case V. Space bounded externally by two parallel planes and a cylinder. Case VI. Space bounded by two parallel planes and two axial planes. Case VII. Space bounded by two axial planes and a cylinder. Case VIII. Space bounded by two axial planes, two parallel planes, and a cylinder. Case IX. Space bounded by two parallel planes, two axial planes, and two cylinders

CHAPTER X
VIBRATIONS OF MEMBRANES

CHAPTER XI
HYDRODYNAMICS

CHAPTER XII
STEADY FLOW OF ELECTRICITY OR OF HEAT IN UNIFORM ISOTROPIC MEDIA

CHAPTER XIII
PROPAGATION OF ELECTROMAGNETIC WAVES ALONG WIRES

CHAPTER XIV
DIFFRACTION

I. Case of Symmetry round an Axis

§ 1. Intensity (on a Screen at Right Angles to the Axis) expressed by Bessel Functions. § 2. Discussion of the Series \((U, V)\) of Bessel
Functions which express the Intensity. § 3. Bessel Function Integrals expressed in terms of U and V Functions. § 4. Two Cases of Diffraction: Case (1), $y=0$. § 5. Case (2), y not zero. § 6. Graphical Method of finding Situations of Maxima and Minima. § 7. Case when Orifice is replaced by an Opaque Disk. § 8. Source of Light a Linear Arrangement of Point Sources. Struve's Function

II. Case of a Slit

§ 9. Diffraction produced by a Narrow Slit bounded by Parallel Edges. Fresnel's Integrals

CHAPTER XV

EQUILIBRIUM OF AN ISOTROPIC ROD OF CIRCULAR SECTION

§ 1. Solutions of the Equations of Equilibrium in Terms of Harmonic Functions. § 2. The General Problem of Surface Traction for a Circular Cylinder

CHAPTER XVI

MISCELLANEOUS APPLICATIONS

MISCELLANEOUS EXAMPLES

APPENDIX I

Formulae for the Gamma Function and the Hypergeometric Function

APPENDIX II

Stokes' Method of obtaining the Asymptotic Expansions of the Bessel Functions

APPENDIX III

Formulae for Calculation of the Zeros of Bessel Functions

EXPLANATION OF THE TABLES

Table I. Values of $J_0(x)$ and $-J_1(x)$

Table II. Values of $J_n(x)$ for different values of n

Table III. The first forty roots of $J_0(x)=0$ with the corresponding values of $J_1(x)$
CONTENTS

TABLE IV. The first fifty roots of \(J_1(x) = 0 \) with the corresponding maximum or minimum values of \(J_0(x) \) 301

TABLE V. The smallest roots of \(J_n(x_s) = 0 \) 302

TABLE VI. \(I_0(x\sqrt{i}) = \text{ber } x+i \text{ bei } x \) 302

TABLE VII. Values of \(I_0(x) \) for \(x = 0 \) to \(x = 5.10 \) 303

TABLE VIII. Values of \(I_1(x) \) for \(n = 0 \) to \(x = 5.10 \) 306

TABLE IX. Values of \(I_0(x), I_1(x), I_2(x), \ldots \) for \(x = 0 \) to \(x = 6 \) 309

TABLE X. Values of \(K_0(x) \) and \(K_1(x) \) for \(x = 0.1 \) to \(x = 11.0 \), to 21 places of decimals 313

TABLE XI. Values of \(K_0(x) \) and \(K_1(x) \) for \(x = 6.1 \) to \(x = 12.0 \), to a smaller number of decimals 315

TABLE XII. Values of \(K_2(x), K_3(x), K_4(x), \ldots K_{10}(x) \) for values of \(x \) from \(x = 0.2 \) to \(x = 5.0 \) 316

TABLE XIII. The first two positive zeros of \(J_n(x) \) when \(n \) is small 317

BIBLIOGRAPHY 318

GRAPHS OF \(J_0(x) \) AND \(J_1(x) \) 323

INDEX 324