Point-Group Theory
Tables

Simon L. Altmann
Brasenose College, Oxford

and

Peter Herzig
University of Vienna

CLARENDON PRESS • OXFORD
1994
Contents

0 How to use this book. Notation
 1 Table numbering and general cross-referencing
 Cross-references on left margins of displayed lines
 Literature references
 2 Symbols used

Part 1. Introduction to the tables

1 Introduction
 1 Comparison with other tables
 2 Construction of the present tables

2 Basic group theory: definitions and formulae
 1 Basic group definitions
 Group properties (postulates)
 Group presentations
 Group definitions
 Group products
 2 Operators
 Configuration-space operators
 Function-space operators
 3 Vector (ordinary) representations
 Definition and properties
 Bases of the representations; representations
 Similarity and unitary transformation of representations
 Characters
 Irreducible representations and their properties

3 Projection operators
 Properties of the projection operators
 Projection operator over a representation

4 Representation reduction
 Notation used in this book for the indices
 Representation reduction by projection operators
 Representation reduction by the internal method

5 Direct products
 Representations of direct-product groups
 Direct product of two representations of the same group
 Symmetrized and antisymmetrized products of the same representation

6 Clebsch–Gordan coefficients
 Notation
 Definition of the Clebsch–Gordan coefficients
 Notation for the Clebsch–Gordan matrix
 The Clebsch–Gordan matrix

7 Matrix elements and selection rules
 The Wigner–Eckart theorem

8 Subduced and induced representations
 Subduced representations (descent of symmetry)
 Induced representations

Bibliographical note
3 Parametrization of symmetry operations
 1 Axes and general definitions
 2 Parametrization of proper rotations
 - Euler angles
 - Angle and axis of rotation
 - Rules for choosing a set of poles as used in the tables
 - The parameters ϕ, n, and ϕn
 - Quaternion (Euler-Rodrigues) parameters λ, A
 - Cayley-Klein parameters
 3 Parametrization of improper operations
 4 Parametrization of double-group operations
 5 Calculation of the Euler angles
 6 Calculation of the angle and axis of rotation from the Euler angles
 Bibliographical note

4 Symmetry operations: notation and properties
 1 Key to the symbols for symmetry operations
 - Basic notation
 - Embellishments, subscripts, and superscripts
 2 Special rotations and rotoreflections
 3 Commutation of symmetry operations
 4 Special relations for symmetry operations
 Bibliographical note

5 Notation for point groups, single and double
 1 Cyclic, dihedral, and related groups
 2 Cubic groups
 3 Icosahedral groups
 4 Double groups
 5 The Hermann-Mauguin or international notation
 Bibliographical note

6 Derivation of the proper and improper point groups
 1 Definitions for proper point groups
 2 Derivation of the proper point groups
 3 Description of the proper point groups
 - Cyclic groups C_n (order $n \geq 2$)
 - Dihedral groups D_n (order $2n$, $n \geq 2$)
 - Tetrahedral group T (order 12)
 - Octahedral group O (order 24)
 - Icosahedral group I (order 60)
 4 Improper groups: general structure
 5 Improper groups with inversion
 - Generated from cyclic groups C_n
 - Generated from dihedral groups D_n
 - Generated from the cubic groups O, T
 - Generated from the icosahedral group I
 6 Improper groups without inversion
 - Generated from cyclic groups C_n
 - Generated from dihedral groups D_n
 - Generated from the cubic groups O, T
 - Generated from the icosahedral group I
 7 Summary. The point-group structure
 Bibliographical note

7 Direct product, semidirect product and coset expansion forms of the point groups

8 The crystallographic point groups

9 Group chains
 1 Definitions and structure of the tables
 - Possible difficulties in group chains, for $G \supset H$
 - Construction of the tables
CONTENTS

2 Description of the group-chain graphs 42
3 An index of the groups in the graphs 42
4 Examples 44
5 The graphs 44

10 Double groups. Spinor and projective representations 51
1 The double group 51
 Definitions 51
 Class structure (Opechowski's theorem) 51
 Irreducible representations 52
2 Projective representations 52
 Motivation 52
 Definitions 53
 Properties 53
Bibliographical note 53

11 The matrices of SU(2) and SU'(2) 54
1 Definitions 54
2 Form of the matrices 54
3 Relation between SU(2) and SU'(2) to the rotation group 54
 Definitions 54
 Relation between SO(3) and SU(2) 54
 Relation between O(3), SU(2), and SU'(2) 54
 The bilateral-binary rotation matrices 55
 The Pauli matrices 55
Bibliographical note 55

12 The continuous groups. Rotations, their matrices, and the irreducible representations of O(3) 56
1 The continuous groups 56
2 Action of a rotation on a vector 56
3 Rotation matrices 56
 Notation 56
 The matrices 56
4 The irreducible representations of O(3) 57
 Basis and form of the representation 57
 Improper rotations 58
 Special cases 58
 The characters 58
Bibliographical note 58

13 Bases: spherical harmonics, spinors, cartesian tensors, and the functions s, p, d, f 59
1 Integral angular momentum: the spherical harmonics 59
2 Half-integral angular momentum: spinors 59
 Higher order spinors: spin harmonics 60
3 Relation between the bases of SO(3) and those of O(3) 60
4 Cartesian tensors 61
5 The s, p, d, and f functions 62
Bibliographical note 62

14 Notation for the irreducible representations 63
1 The basic symbols 63
2 Embellishments 63
3 Lower-case symbols 64

15 Stereographic projections and three-dimensional drawings of point groups 65
1 Key to the symbols for the stereographic projections 65
2 Key to the symbols for the three-dimensional drawings 66
Bibliographical note 66
CONTENTS

16 How to use the tables
 General instructions 67
 Description of the tables 67
0 Subgroup elements 68
1 Parameters
 Notation for the headers of T n.1 68
 Instructions 68
2 Multiplication table
 Notation for the headers of T n.2 69
 Instructions 69
 Example. Obtention of the multiplication table for D2 69
3 Factor table
 Notation for the headers of T n.3 70
 Instructions 70
4 Character table
 Obtention of the character table for the double group 71
 Example. Obtention of the character table for D2 71
 Time reversal: column headed ‘r’ in the tables 71
5 Cartesian tensors. The s, p, d, and f functions
 The cartesian tensors (up to and including rank 3) 72
 The s, p, d, and f functions 72
 Example. Cartesian tensors and s, p, d, and f functions for D2 73
6 Symmetrized bases 74
 General notes 74
 The cyclic, dihedral, and related groups 74
 The cubic and icosahedral groups 75
7 Matrix representations
 Notation for the headers of T n.7, and for its first row 77
 Vector representations 78
 Double-group representations 78
 Projective representations (full table, including vector representations) 79
 Examples. Representations of D3 79
 Icosahedral group I 80
8 Direct product of representations 81
 Notation for the headers of T n.8, and for its first column 81
 Use of the table 81
 Example. Direct products for representations of D3 81
9 Subduction (descent of symmetry) 82
 Example. Subgroups D2 of O 82
10 Subduction from O(3) 82
 Example. Subduction from O(3) to C2h 83
11 Clebsch–Gordan coefficients 83
 Notation for the headers of T n.11 83
 Notation required to use the tables 84
 Description of the tables 84
 Example. Coupling of the representations E1/2 and E5/2 of D6 84
Bibliographical note 85

17 Problems 86
 Cross-references 86
 1 Multiplication rules 86
 2 The regular representation 87
 3 Transformation of the components of a vector 87
 4 A rotation acting on the function space 88
 5 The faithful (Jones) representation 88
 6 Hybrids: general form 88
 7 Reduction of a representation by the internal method 89
 8 Cubic hybrids 89
9 Eight equivalent hybrids not requiring f orbitals 90
10 Hybrids: their full expression 91
11 Symmetrized molecular orbitals 91
 The symmetry group 91
 How to find the irreducible representations that appear in the molecular orbitals 92
 Use of the projection operator 92
 The symmetrized functions (bases) 92
 The full symmetry of the molecular orbitals in D_{6h} 93
12 Symmetrized molecular orbitals: projecting over the representations 93
13 A transition-metal complex 94
14 Use of the projection operator on a direct product 95
15 Selection rules 95
16 The form of the secular determinant 96
17 Normal coordinates 96
18 Infrared and Raman activity of normal vibrations 98
19 Overtones and combination frequencies 98
20 Normal vibrations in methane 99
21 Jahn–Teller effect 100
22 Electronic states in an octahedral complex 100
23 Splitting of a doublet in a magnetic field 100
24 Subduction (descent of symmetry) 100
25 Double group: term splitting 100
 Double-group method 101
 Projective-representation method 102
26 A crystal field 102
27 Time reversal 103
28 Vector coupling 103

Part 2. The tables

The proper cyclic groups C_n 107
T 1 C_1 108
T 3 C_3 112
T 5 C_5 116
T 7 C_7 122
T 9 C_9 128
T 2 C_2 110
T 4 C_4 114
T 6 C_6 119
T 8 C_8 125
T 10 C_{10} 132

The improper cyclic groups C_i and C_s 137
T 11 C_i 138
T 12 C_s 140

The improper cyclic groups S_n 143
T 13 S_4 144
T 15 S_5 149
T 17 S_{12} 156
T 19 S_{16} 166
T 21 S_{20} 181
T 14 S_6 146
T 16 S_{10} 152
T 18 S_{14} 161
T 20 S_{18} 173

The dihedral groups D_n 193
T 22 D_3 194
T 24 D_4 199
T 26 D_6 207
T 28 D_8 220
T 30 D_{10} 235
T 23 D_3 196
T 25 D_5 203
T 27 D_7 213
T 29 D_9 227

The groups D_{nh} 245
T 31 D_{2h} 246
T 33 D_{4h} 256
T 35 D_{6h} 273
T 37 D_{8h} 304
T 39 D_{10h} 343
T 32 D_{3h} 250
T 34 D_{5h} 263
T 36 D_{7h} 284
T 38 D_{9h} 314
T 40 D_{\infty h} 357

XI
<table>
<thead>
<tr>
<th>The groups D_{nd}</th>
<th>366</th>
<th>T 42 D_{8d}</th>
<th>370</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 41 D_{2d}</td>
<td>375</td>
<td>T 44 D_{6d}</td>
<td>382</td>
</tr>
<tr>
<td>T 43 D_{4d}</td>
<td>388</td>
<td>T 46 D_{7d}</td>
<td>404</td>
</tr>
<tr>
<td>T 45 D_{6d}</td>
<td>413</td>
<td>T 48 D_{9d}</td>
<td>436</td>
</tr>
<tr>
<td>T 49 D_{10d}</td>
<td>448</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The groups C_{nv}</th>
<th>482</th>
<th>T 51 C_{8v}</th>
<th>484</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 50 C_{2v}</td>
<td>489</td>
<td>T 53 C_{6v}</td>
<td>492</td>
</tr>
<tr>
<td>T 52 C_{4v}</td>
<td>497</td>
<td>T 55 C_{7v}</td>
<td>501</td>
</tr>
<tr>
<td>T 54 C_{6v}</td>
<td>507</td>
<td>T 57 C_{9v}</td>
<td>510</td>
</tr>
<tr>
<td>T 56 C_{8v}</td>
<td>519</td>
<td>T 59 C_{10v}</td>
<td>523</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The groups C_{nh}</th>
<th>532</th>
<th>T 61 C_{3h}</th>
<th>534</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 60 C_{2h}</td>
<td>537</td>
<td>T 63 C_{5h}</td>
<td>541</td>
</tr>
<tr>
<td>T 62 C_{4h}</td>
<td>545</td>
<td>T 65 C_{7h}</td>
<td>550</td>
</tr>
<tr>
<td>T 64 C_{6h}</td>
<td>556</td>
<td>T 67 C_{9h}</td>
<td>562</td>
</tr>
<tr>
<td>T 66 C_{8h}</td>
<td>570</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T 68 C_{10h}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The cubic groups</th>
<th>580</th>
<th>T 70 T</th>
<th>590</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 69 O</td>
<td>595</td>
<td>T 72 T_{h}</td>
<td>632</td>
</tr>
<tr>
<td>T 71 O_{h}</td>
<td>637</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The icosahedral groups</th>
<th>642</th>
<th>T 75 I_{h}</th>
<th>659</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 74 I</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References 699
Index 701