1 MOS Transistor Models

Introduction

1-1 MOSFET and Junction FET
 1-1-1 JFET
 1-1-2 MOST
 1-1-3 nMOST and pMOST

1-2 Capacitances and MOST Threshold Voltages
 1-2-1 MOS Capacitance
 1-2-2 Junction Capacitance
 1-2-3 MOST and JFET
 1-2-4 MOST Threshold Voltage
 1-2-5 Enhancement and Depletion MOST

1-3 MOST Linear Region and Saturation Region
 1-3-1 Large v_{GS}, Small v_{DS}, and Zero v_{BS}
 1-3-2 Large v_{GS}, Large v_{DS}, and Zero v_{BS}
 1-3-3 Large v_{GS}, Small v_{DS}, and Large v_{BS}

1-4 MOST Current-Voltage Characteristics
 1-4-1 Linear Region
 1-4-2 Linear Region: First-Order Model
 1-4-3 MOST in Saturation: First-Order Model
 1-4-4 Parameters K' and n
 1-4-5 Plots of i_{DS} versus v_{GS} and v_{BS}
 1-4-6 Effective Channel Length and Width

1-5 Small-Signal Model in Saturation
 1-5-1 Transconductance g_m
2 Bipolar Transistor Models

2-1 Bipolar Transistor Operation
2-1-1 Structure
2-1-2 Depletion Layers
2-1-3 Base Doping
2-1-4 Forward Biasing
2-1-5 Base Transit Time

2-2 The Transistor Beta (β)
2-2-1 Beta Caused by Injection in the Emitter β_{IE}
2-2-2 Beta Caused by Recombination in the Base β_{RB}
2-2-3 Beta Caused by Recombination in the EB Space Charge Layer
2-2-4 AC Beta β_{AC}

2-3 The Hybrid-π Small-Signal Model
2-3-1 Transconductance g_m
2-3-2 Input Resistance r_π
2-3-3 Output Resistance r_o
2-3-4 Voltage Gain of Small-Signal Gain Stage
2-3-5 Junction Capacitances
2-3-6 Diffusion Capacitance C_D
2-3-7 Common-Emitter Configuration with Current Drive
2-3-8 Common-Emitter Configuration with Voltage Drive
2-3-9 Common-Collector and Common-Base Configurations

2-4 The Ohmic Resistances
2-4-1 The Base Resistance
2-4-2 Extrinsic Base Resistance
2-4-3 Intrinsic Base Resistance
2-4-4 The Collector Resistances
2-4-5 The Emitter Resistance

2-5 High-Injection and Other Second-Order Effects
2-5-1 High-Injection Effects in the Base
2-5-2 High-Injection Model of Beta
2-5-3 Base Resistance Effects
2-5-4 Graded Base
2-5-5 Collector Current Spreading
2-5-6 High-Injection Effects in the Collector
2-5-7 Bipolar Transistors for VLSI

2-6 Lateral pnp Transistors
2-6-1 Substrate pnp Transistors
2-6-2 Lateral \textit{pnp} Transistors 137
2-6-3 Base Width, Early Voltage, and Punchthrough 139
2-6-4 Base Resistance and Emitter Crowding 139
2-6-5 Applications with \textit{pnp}'s 139

2-7 Noise 142
2-7-1 Input Noise Sources 142
2-7-2 Equivalent Input Noise Sources 143
2-7-3 Noise Figure 144
2-7-4 Optimum R_S 145
2-7-5 Optimum NF 146
2-7-6 Optimum I_C 146

2-8 Design Example 147
2-9 Other Components 147
2-9-1 Base Diffusion Resistors 147
2-9-2 Other Resistors 149
2-9-3 Temperature Coefficient 150
2-9-4 Voltage Coefficient 151
2-9-5 Frequency Dependence 151
2-9-6 Absolute and Relative Accuracy 152
2-9-7 Resistors in a CMOS Process 153
2-9-8 Thin Film Resistors 153
2-9-9 Capacitors 153
2-9-10 Inductors 155

2-10 Comparison between MOSTs and Bipolar Transistors 156
2-10-1 Input Current 157
2-10-2 DC Saturation Voltage 157
2-10-3 Transconductance-Current Ratio 159
2-10-4 Design Planning 160
2-10-5 Current Range 160
2-10-6 Maximum Frequency of Operation 160
2-10-7 Noise 161
Summary 162
Exercises 162
Appendix 2-1 164
References 169

3 Feedback and Sensitivity in Analog Integrated Circuits 170

Introduction 170
3-1 Feedback Theory 172
3-1-1 Basic Feedback Concepts and Definitions 177
3-1-2 Feedback Configurations and Classifications 185

3-2 Analysis of Feedback Amplifier Circuits 188
3-2-1 Analysis When the Feedback Network is One of the Four Basic Configurations in Fig. 3-7 189
3-2-2 Blackman's Impedance Relation 194
3-2-3 The Asymptotic Gain Relation 198

3-3 Stability Considerations in Linear Feedback Systems 200
3-3-1 Effect of Feedback on the System Natural Frequencies 202
3-3-2 The Use of Bode Plots in Stability Analysis 212
3-4 Sensitivity, Component Matching and Yield
3-4-1 Component Matching
3-4-2 Sensitivity Problem in Precision Analog Circuits
3-4-3 Yield Considerations in Analog Integrated Circuits
Summary
Exercises
Appendix 3-1: Approximate Calculations for a Two-Pole System when the Poles are Real and Widely Separated
Appendix 3-2: Exact Calculation of the Bode Diagram for Two-Pole Systems
References

4 Elementary Transistor Stages
Introduction
4-1 MOST Single-Transistor Amplifying Stages
4-1-1 Biasing
4-1-2 Low Frequency Gain
4-1-3 Bandwidth
4-1-4 Full Circuit Performance at High Frequencies
4-1-5 Unity-Gain Frequency and Gain-Bandwidth Product
4-1-6 Noise Performance
4-2 Bipolar Single-Transistor Amplifying Stages
4-2-1 Biasing
4-2-2 Gain for Voltage Drive and Current Drive
4-2-3 Frequency Performance
4-2-4 Gain-Bandwidth Product
4-2-5 Input Impedance
4-3 Source and Emitter Followers
4-3-1 Source Followers
4-3-2 Emitter Followers
4-3-3 Noise Performance
4-4 Cascade Transistors
4-4-1 MOST Cascodes
4-4-2 Bipolar Transistor Cascodes
4-4-3 Noise Performance
4-5 CMOS Inverter Stages
4-5-1 DC Analysis of CMOS Inverters
4-5-2 Low Frequency Gain
4-5-3 Bandwidth
4-5-4 Current Capability and Slew Rate
4-5-5 Design Procedure
4-5-6 Other MOST Inverters
4-5-7 Bipolar Transistor Inverter Stages
4-5-8 Noise Performance
4-6 Cascade Stages
4-6-1 Cascade Configurations
4-6-2 Bandwidth of Cascade with Low R_L
4-6-3 Cascade with Active Load
4-6-4 Noise Performance
4-6-5 High Voltage Cascade
6-2-1 Operating Principles and Biasing
6-2-2 Gain of the Miller OTA
6-2-3 Gain-Bandwidth Product and Phase-Margin
6-2-4 Design Plan
6-2-5 Miller BICMOS OTAs

6-3 Full Set of Characteristics of the Miller OTA
6-3-1 Full DC Analysis: Common-Mode Input Voltage Range
 versus Supply Voltage
6-3-2 Full DC Analysis: Output Range versus Supply Voltage
6-3-3 Full DC Analysis: Maximum Output Current (Source and Sink)
6-3-4 AC Analysis: Low Frequencies
6-3-5 Gain-Bandwidth versus Biasing Current
6-3-6 Slew Rate versus Load Capacitance
6-3-7 Output Voltage Range versus Frequency
6-3-8 Settling Time
6-3-9 Input Impedance
6-3-10 Output Impedance
6-3-11 Temperature Effects

6-4 Noise Analysis of OTAs
6-4-1 Noise Performance at Low Frequencies
6-4-2 Noise Performance at High Frequencies
6-4-3 Total Integrated Output Noise

6-5 Matching Specifications
6-5-1 Transistor Mismatch Model
6-5-2 Offset Voltage Definition
6-5-3 Mismatch Effects on a Current Mirror
6-5-4 Differential Stage with Active Load
6-5-5 Offset Drift
6-5-6 CMRR
6-5-7 Relation between Random V_{osr} and $CMRR_r$
6-5-8 Relation between Systematic V_{oss} and $CMRR_r$
6-5-9 CMRR versus Frequency
6-5-10 Offset and CMRR of the Miller CMOS OTA
6-5-11 Design for Low Offset and Drift
6-5-12 Offset in JFET Differential Amplifier
6-5-13 Offset and CMRR in Bipolar Differential Amplifier
6-5-14 Bias Current, Offset, and Drift

6-6 Power Supply Rejection Ratio
6-6-1 $PSRR_{DD}$ of Simple CMOS OTA
6-6-2 $PSRR_{SS}$ of Simple CMOS OTA
6-6-3 $PSRR_{DD}$ of the Miller CMOS OTA
6-6-4 $PSRR_{SS}$ of the Miller CMOS OTA

6-7 Design of Other OTAs
6-7-1 Symmetrical CMOS OTA
6-7-2 Cascode Symmetrical CMOS OTA
6-7-3 Symmetrical Miller CMOS OTA with High PSRR
6-7-4 Folded-Cascode CMOS OTA
6-7-5 Operational Current Amplifier (OCA)
6-8 Design Options
 6-8-1 Design for Optimum GBW or SR 595
 6-8-2 Compensation of Positive Zero 598
 6-8-3 Fully Differential or Balanced OTAs 601
6-9 Op Amp Examples 607
 6-9-1 CMOS op Amp Configurations 607
 6-9-2 Bipolar Op Amp Configurations 608
 6-9-3 BIMOS and BIFET Op Amp Configurations 610
Summary 612
Exercises 612
Appendix 6-1: Pole-Zero Doublets and Settling Time 622
Appendix 6-2: Amplifier Configurations 628
References 646

7 Fundamentals of Continuous-Time and Sampled-Data Active Filters 648
 Introduction 648
 7-1 Linear Filtering Concepts and Definitions 649
 7-2 Schemes for Integrated Analog Filters 652
 7-2-1 Active-RC and Active G_m/C Filters 652
 7-2-2 Active-SC Filters 657
 7-3 Filter Types and Frequency Response Specifications 666
 7-3-1 Lowpass 668
 7-3-2 Highpass 670
 7-3-3 Bandpass 671
 7-3-4 Band-Reject 672
 7-3-5 Allpass or Delay Equalizer 672
 7-3-6 Basic Filter Specifications 675
 7-4 Determining a Nominal H 678
 7-4-1 Maximally-Flat or Butterworth Filters 679
 7-4-2 Equi-Ripple (Chebyshev) Filters 681
 7-4-3 Cauer (Elliptic) Filters 684
 7-4-4 Bessel (Linear Phase) Filters 685
 7-5 Frequency Transforms 686
 7-5-1 s-to-s Transforms 687
 7-5-2 s-to-z Transforms 688
 7-6 Noise, DC Offset, Harmonic Distortion and Dynamic Range 690
 7-7 Sensitivity, Variability, and Yield 696
 7-8 Modeling and Analysis of Switched-Capacitor Filters 703
 7-8-1 Periodic Time-Variance in Biphase SC Filters 704
 7-8-2 ϕ^e and ϕ^o Decomposition 708
 7-8-3 Switched-Capacitor z-Domain Models 713
 7-8-4 Active SC Integrators 718
Summary 723
Exercises 724
Appendix 7-1: Sampled-Data Signals and Systems 732
References 756
Design and Implementation of Integrated Active Filters

Introduction

- Parasitic Capacitances in Integrated Filters
- Design of Practical Integrated Filter Components
 - Poly 1-Poly 2 Capacitor
 - MOST Analog Switch
 - Linearized MOST Resistor
 - Linearized OTA Transconductance
- Parasitics and Filter Precision
 - Reducing the Effect of Parasitics on Filter Precision
 - Parasitic Insensitive Switched-Capacitor Structures
- Automatic On-Chip Tuning
 - On-Chip Tuning Strategies
 - Frequency Tuning with PLL
 - Q tuning with MLL
- PSRR, Clock Feedthrough and DC Offset
 - Clock Feedthrough and DC Offset Cancellation
 - Layout Measures to Improve PSRR
 - Balanced Active-RC and SC Design
- First-Order and Biquadratic Filter Stage Realizations
 - Realizing Real Poles and Zeros
 - Types of Biquads
- Fleischer-Laker Active-SC Biquads
 - Evaluation of the General Active-SC Biquad
 - Synthesis of Practical Active-SC Biquads
 - Examples
- Integrated Continuous-Time Fleischer-Laker Type Biquads
 - Active-RC Biquads using MOST-R’s
 - Active-G_m/C Biquads using MOST-G_m’s
- High-Order Filter Implementation Using Cascaded Stages
 - Cascading First- and Second-Order Filter Stages
 - Time-Staggered Active-SC Stages
 - Settling Error Analysis of Delay Equalizers Realized as a Cascade of Active-SC AP Stages
- High-Order Filter Implementation Using Active Ladders
 - Sensitivity
 - Realization Using Signal Flow Graphs
 - Realizing All-Pole LP Filters
 - Realizing Symmetric All-Pole BP Filters
 - Realizing Finite Transmission Zeros
- Summary
- Exercises
- References

Index

- Design and Implementation of Integrated Active Filters
- Parasitic Capacitances in Integrated Filters
- Design of Practical Integrated Filter Components
 - Poly 1-Poly 2 Capacitor
 - MOST Analog Switch
 - Linearized MOST Resistor
 - Linearized OTA Transconductance
- Parasitics and Filter Precision
 - Reducing the Effect of Parasitics on Filter Precision
 - Parasitic Insensitive Switched-Capacitor Structures
- Automatic On-Chip Tuning
 - On-Chip Tuning Strategies
 - Frequency Tuning with PLL
 - Q tuning with MLL
- PSRR, Clock Feedthrough and DC Offset
 - Clock Feedthrough and DC Offset Cancellation
 - Layout Measures to Improve PSRR
 - Balanced Active-RC and SC Design
- First-Order and Biquadratic Filter Stage Realizations
 - Realizing Real Poles and Zeros
 - Types of Biquads
- Fleischer-Laker Active-SC Biquads
 - Evaluation of the General Active-SC Biquad
 - Synthesis of Practical Active-SC Biquads
 - Examples
- Integrated Continuous-Time Fleischer-Laker Type Biquads
 - Active-RC Biquads using MOST-R’s
 - Active-G_m/C Biquads using MOST-G_m’s
- High-Order Filter Implementation Using Cascaded Stages
 - Cascading First- and Second-Order Filter Stages
 - Time-Staggered Active-SC Stages
 - Settling Error Analysis of Delay Equalizers Realized as a Cascade of Active-SC AP Stages
- High-Order Filter Implementation Using Active Ladders
 - Sensitivity
 - Realization Using Signal Flow Graphs
 - Realizing All-Pole LP Filters
 - Realizing Symmetric All-Pole BP Filters
 - Realizing Finite Transmission Zeros
- Summary
- Exercises
- References

- Index