CONTENTS

PREFACE

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 1 □ MARINE LIGHT FIELD STATISTICS: AN INTRODUCTION

1-1	Air-Sea Interface Radiometry	2
1-2	Slope-to-Radiance Transformations	5
1-3	Memoryless Systems	6
1-4	Sea-Surface Input Statistics	8
1-5	First-Order Radiance Statistics	9
1-5.1	Sun Glitter	11
1-5.2	Linear Slope-to-Radiance Transformations	11
1-5.3	General Slope-to-Radiance Transformations	12
1-6	Radiance Autocorrelation and Variance Spectrum	14
1-7	Spatial and Temporal Filtering	15
1-8	Summary	16

CHAPTER 2 □ RADIATIVE TRANSPORT THEORY

2-1	Radiometry Terms and Nomenclature	20
2-2	The Radiative Transport Equation	24
2-3	Single-Scattering and Quasi-Single-Scattering Approximations	29
2-3.1	First-Order Scattering	30
2-3.2	Second-Order Scattering	33
2-3.3	Quasi-Single-Scattering Approximation	37
2-4	Multiple-Scattering Approximations	41
2-4.1	The Diffusion Approximation	41
2-4.2	The Two-Stream Approximation	48
2-5	Small-Angle-Scattering Approximation	58
2-6	A Multiple-Scattering Hybrid Radiometric Model	71
CONTENTS

2-A Isotropie Similarity 85
 2-A.1 Similarity Criteria 85
 2-A.2 Semiinfinite Medium 87
 2-A.3 Asymptotic Solution 88
 2-A.4 Isotropie Similarity via a Scattering Phase Function 94

CHAPTER 3 □ SOLAR RADIATION 95
 3-1 Solar Radiance and Irradiance 95
 3-2 Blackbody Radiation 96

CHAPTER 4 □ ATMOSPHERIC OPTICS 99
 4-1 The Gaseous Atmosphere 100
 4-1.1 Atmospheric Scale Height 100
 4-1.2 Scattering Cross Section and Scattering Phase Function 102
 4-1.3 Ozone Absorption 106
 4-1.4 Summary of Air Optical Parameters 108
 4-2 Boundary-Layer and Stratospheric Aerosols 108
 4-2.1 Horizontal Visibility and Scale Height for Boundary-Layer Aerosols 111
 4-2.2 Absorption and Scattering Properties of Marine Aerosols 113
 4-2.3 An Atmospheric Aerosol Optical Model 121
 4-3 Cloud Optics 126
 4-3.1 Cloud Classification 126
 4-3.2 Height and Thickness of Clouds 128
 4-3.3 Absorption and Scattering by Cloud Droplets 128
 4-3.4 Modeling Cloud Optics 135

CHAPTER 5 □ HYDROLOGIC OPTICS 136
 5-1 The Composition and Classification of Ocean Waters 137
 5-2 Inherent Water Optical Properties 142
 5-2.1 Optical Properties of Pure Water 145
 5-2.2 Absorption by Dissolved Organic Matter, Phytoplankton, and Detritus 145
 5-2.3 Scattering by Phytoplankton and Detritus 154
 5-3 Quasi-Inherent (Apparent) Water Optical Properties 162
CHAPTER 6 □ SEA-SURFACE STATISTICS

6-1 Sea-Surface Hydrodynamics
6-1.1 The Equations of Continuity and Motion 204
6-1.2 Free-Surface Boundary Conditions 205
6-1.3 Linear Surface Waves and the Dispersion Relation 207
6-2 Spectral Representations for a Linear Sea
6-2.1 Surface Displacement Autocovariance and Spectral Density 215
6-2.2 Covariances and Spectral Densities for other Variables 220
6-2.3 Spectral Moments 224
6-3 Probability Density Functions for a Linear Sea
6-3.1 Bivariate and Multivariate Normal Distributions 227
6-3.2 Density Function for Surface Displacement 228
6-3.3 Density Functions for Surface Slope 228
6-3.4 Density Function for Surface Curvature 231
6-3.5 Density Function for Surface Currents 232
6-4 Sea-Surface Spectral Models
6-4.1 Semiempirical Gravity-Wave Spectral Models 234
6-4.2 Semiempirical Short Gravity and Capillary Wave Spectral Models 242
6-4.3 Spectral Models Based on the Spectral Action Balance Equation 249
6-5 A Surface-Wave Spectral Model for Radiometric Modeling
6-5.1 Basic Surface-Wave Spectral Model 261
6-5.2 Effects of Variable Wind and Random Surface Currents 274
6-A The Turbulent Boundary Layer and Friction Velocity 282
6-B Doppler Effects
6-B.1 Uniform Surface Currents 288
6-B.2 Swell-Induced Doppler Effects 289
6-B.3 Doppler Effects due to a Random Wave Field 291
CHAPTER 7 □ SUN GLITTER 297

7-1 Mean Glitter Radiance 298
7-2 Specular Points 310
 7-2.1 Small-Angle Approximation 310
 7-2.2 Creation and Annihilation of Specular Points 312
 7-2.3 Density of Specular Points 315
 7-2.4 Specular Point Lifetime 319
7-3 Sun Glitter Autocorrelation and Spectral Density 321
 7-3.1 Glitter Autocorrelation for a Point Solar Source 323
 7-3.2 Glitter Autocorrelation for a Gaussian-Distributed Solar Source 324
 7-3.3 Small-Lag and Long-Lag Approximations 331
 7-3.4 Glitter Spectral Density 337
7-A Cox and Munk Glitter Analysis 341

CHAPTER 8 □ CLEAR SKY RADIOMETRY 344

8-1 Radiometry 349
 8-1.1 The Downwelling Radiance, $L_d(0,\hat{s})$ 350
 8-1.2 The Upwelling Radiance, $L_u(0,\hat{s})$ 354
8-2 Mean and Variance of Upwelling Radiance 364
 8-2.1 Spatial and Temporal Averaging 378
8-3 First-Order Probability Density for Upwelling Radiance 386
8-4 Upwelling Radiance Spectral Density 393
 8-4.1 Linear Approximation 397
 8-4.2 Nonlinear Effects — Quadratic Approximation 404
8-A Hermite Series Approximation — An Equivalent Memoryless System 406
8-B Two-Scale Radiometric Model 412
 8-B.1 Basic Concept 413
 8-B.2 Mean and Variance of Filtered Radiance 415
 8-B.3 Applications 418
8-C Convolutions of Slope Spectral Densities 420
 8-C.1 General Theory 421
 8-C.2 Convolutions of Total Slope Spectral Densities 430
 8-C.3 Isotropic Sea 430
 8-C.4 Convolutions of Surface Elevation Spectral Densities 432
CHAPTER 9 □ CLOUDED SKY RADIOMETRY

9-1 Cloud Statistics 437
 9-1.1 Sky Cover and Cloud-Free Line of Sight 438
 9-1.2 Visibility through a Scattered Cloud Layer 440
 9-1.3 Statistical Model for a Broken Cloud Layer 444
9-2 The Downwelling Radiance, \(L_d(0,\hat{s}) \) 448
 9-2.1 Stratus Cloud Radiometry 451
 9-2.2 Cumulus Cloud Radiometry 455
9-3 The Upwelling Reflected-Refracted Light Field, \(L_u(0,\hat{s}) \) 463
 9-3.1 Upwelling Radiance Statistics 466
 9-3.2 Mean and Variance of Upwelling Radiance 473
9-A Threshold Statistical Model for a Broken Cloud Field 483
 9-A.1 Statistics for the Meteorological Variable, \(\sigma \) 484
 9-A.2 Mean and Variance of Cloud Cover 486
 9-A.3 Autocorrelation for Cloud Cover 486
 9-A.4 Cloud Frequency, Cloud-Free Interval, and Cloud-Free Field of View 489

CHAPTER 10 □ REFRACATED LIGHT STATISTICS

10-1 Underwater Light Field Fluctuations — An Overview 495
 10-1.1 Downwelling Radiance and Irradiance 495
 10-1.2 Upwelling Radiance 502
 10-1.3 Imaging Through the Interface 503
 10-1.4 Lidar Probing of the Ocean 503
10-2 Defining the Theoretical Problem 504
10-3 Ray Model Approximations 507
 10-3.1 Mean Downwelling Radiance 507
 10-3.2 Downwelling Irradiance Statistics 511
10-4 Small-Angle Approximations —
 Downwelling Radiance and Irradiance Statistics 517
 10-4.1 The Ray Model 520
 10-4.2 Diffuse Sources and Hydrosol Scattering 528
 10-4.3 Summary and Numerical Applications 531
10-5 Small-Angle Approximations —
 Upwelling Radiance Statistics 535
 10-5.1 Mean Upwelling Radiance
 — Intensified Backscattering 539