CHUA'S CIRCUIT: A Paradigm for CHAOS

edited by

Rabinder N. Madan
Office of Naval Research
Electronics Division
Arlington, USA
CONTENTS

Preface v

Gallery of Attractors from Chua’s Oscillator xv

1. PROLOGUE

Strange attractors and dynamical models
L. P. Shil’nikov 3

A CMOS monolithic Chua’s circuit
M. Delgado-Restituto and A. Rodríguez-Vázquez 13

Dynamics of the Lorenz equation and Chua’s equation: A tutorial
Lj. Kocarev and T. Roska 25

2. BIFURCATION PHENOMENA

Introduction to experimental chaos using Chua’s circuit
R. N. Madan and C. W. Wu 59

The theory of confinors in Chua’s circuit: Accurate analysis of bifurcations and attractors
R. Lozi and S. Ushiki 90

Experimental observation of antimonotonicity in Chua’s circuit

On periodic orbits and homoclinic bifurcations in Chua’s circuit with a smooth nonlinearity
A. I. Khibnik, D. Roose, and L. O. Chua 145

Chua’s oscillator: A zoo of attractors
P. Deregel 179

Characterisation of chaos in Chua’s oscillator in terms of unstable periodic orbits
M. J. Ogorzalek and Z. Galias 230

Boundary surfaces and basin bifurcations in Chua’s circuit
L. Pivka and V. Špány 249

3. RESONANCE, SYNCHRONIZATION, AND WAVES

Stochastic resonance in Chua’s circuit
V. S. Anishchenko, M. A. Safonova, and L. O. Chua 281
Signal amplification via chaos: Experimental evidence
K. S. Halle, L. O. Chua, V. S. Anishchenko, and M. A. Safonova

Chaos synchronization in Chua’s circuit

On chaotic synchronization in a linear array of Chua’s circuits
V. N. Belykh, N. N. Verichev, Lj. Kocarev, and L. O. Chua

Traveling wave front and its failure in a one-dimensional array of Chua’s circuit
V. Perez-Munuzuri, V. Perez-Villar, and L. O. Chua

Spatial disorder and wave fronts in a chain of coupled Chua’s circuits
V. I. Nekorkin and L. O. Chua

4. APPLICATIONS OF CHUA’S CIRCUIT

Experimental demonstration of secure communications via chaotic synchronization

Spread spectrum communication through modulation of chaos in Chua’s circuit

Transmission of digital signals by chaotic synchronization

Bifurcation analysis of Chua’s circuit with applications for low-level visual sensing
E. J. Altman

Sound and music from Chua’s circuit
X. Rodet

5. CONTROLLING CHAOS

Controlling chaos in Chua’s circuit
G. A. Johnson, T. E. Tigner, and E. R. Hunt

Maintaining stability in Chua’s circuit driven into regions of oscillation and chaos
G. A. Johnson and E. R. Hunt

Controlling of chaos in the driven Chua’s circuit
K. Murali and M. Lakshmanan

Targeting unstable stationary states of Chua’s circuit
T. Kapitaniak
6. ONE-DIMENSIONAL POINCARÉ MAPS FROM CHUA’S CIRCUIT

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications of 1-D map from Chua’s circuit: A pictorial guide</td>
<td>545</td>
</tr>
<tr>
<td>M. Genot</td>
<td></td>
</tr>
<tr>
<td>Experimental analysis of 1-D maps from Chua’s circuit</td>
<td>580</td>
</tr>
<tr>
<td>N. F. Rul’kov and A. R. Volkovskii</td>
<td></td>
</tr>
<tr>
<td>Two-parameter study of transition to chaos in Chua’s circuit:</td>
<td>591</td>
</tr>
<tr>
<td>Renormalization group, universality and scaling</td>
<td></td>
</tr>
<tr>
<td>Chua’s circuit with a discontinuous nonlinearity</td>
<td>622</td>
</tr>
<tr>
<td>A. I. Mahla and Á. G. Badan Palhares</td>
<td></td>
</tr>
<tr>
<td>From the Chua circuit to the generalized Chua map</td>
<td>629</td>
</tr>
<tr>
<td>R. Brown</td>
<td></td>
</tr>
<tr>
<td>Unimodal interval maps obtained from the modified Chua equations</td>
<td>651</td>
</tr>
<tr>
<td>M. Misiurewicz</td>
<td></td>
</tr>
</tbody>
</table>

7. STRANGE ATTRACTORS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The double hook attractor in Chua’s circuit: Some analytical results</td>
<td>671</td>
</tr>
<tr>
<td>C. P. Silva</td>
<td></td>
</tr>
<tr>
<td>Chua’s circuit as a slow-fast autonomous dynamical system</td>
<td>711</td>
</tr>
<tr>
<td>B. Rossetto</td>
<td></td>
</tr>
<tr>
<td>Global stability and instability of canonical Chua’s circuits</td>
<td>725</td>
</tr>
<tr>
<td>G. A. Leonov, D. V. Ponomarenko, V. B. Smirnova, and L. O. Chua</td>
<td></td>
</tr>
<tr>
<td>A new type of strange attractor related to the Chua’s circuit</td>
<td>740</td>
</tr>
<tr>
<td>V. N. Belykh and L. O. Chua</td>
<td></td>
</tr>
<tr>
<td>Enigma of the double-scroll Chua’s attractor</td>
<td>754</td>
</tr>
<tr>
<td>V. S. Afraimovich and L. O. Chua</td>
<td></td>
</tr>
</tbody>
</table>
8. PIECEWISE-LINEAR ANALYSIS

Digital signal processor-based investigation of Chua’s circuit family
M. P. Kennedy, C. W. Wu, S. Pau, and J. Tow

Piecewise-linear analysis for Chua’s circuit family, including the
computation of Lyapunov exponents
M. Biery, S. Chialina, M. Hasler, and A. Premoli

Modelling and simulation of Chua’s circuit
E. Lindberg

Maximum dynamic range of bifurcations of Chua’s circuit
A. A. A. Nasser, E. E. Hosny, and M. I. Sobhy

The effects of symmetry breaking in Chua’s circuit and related
piecewise-linear dynamical systems
C. Kahlert

Transformations of circuits belonging to Chua’s circuit family into
nonlinear feedback loops made of passive RC-filter and active
memoryless nonlinearity
F. Böhme and W. Schwarz

9. TIME SERIES ANALYSIS

Chaos-chaos intermittency and 1/f noise in Chua’s circuit
V. S. Anishchenko, A. B. Neiman, and L. O. Chua

Bispectral analysis of Chua’s circuit
S. Elgar and M. P. Kennedy

Reconstructing the dynamics of Chua’s circuit
J. Glover and A. Mees

Lyapunov exponents from Chua’s circuit
U. Parlitz

10. GENERALIZATIONS OF CHUA’S CIRCUIT

An autonomous chaotic cellular neural network and Chua’s circuit
F. Zou and J. A. Nossek

Chaotic cellular neural networks made of Chua’s circuits
C. Güzelis

Dynamics of Chua’s circuit in a Banach space
C. M. Blázquez and E. Tuma

High-frequency oscillations from Chua’s circuit
K. A. Lukin
Cycles of chaotic intervals in a time-delayed Chua's circuit
Yu. L. Maistrenko, V. L. Maistrenko, and L. O. Chua

Dry turbulence from a time-delayed Chua's circuit

Adventures in Bifurcations and Chaos