CONTENTS

1 **INTRODUCTION**

2 **SHOCK WAVES ON EARTH AND IN SPACE**
 2.1 Introduction
 2.2 Lightning–thunder phenomenon
 2.3 Volcanic explosions
 2.4 Meteor impact
 2.5 Earthquakes
 2.6 Solar flares
 2.7 Magnetosphere flow
 2.8 Galactic shock waves
 References

3 **TRANSITION FRONTS**
 3.1 Basic gas dynamic equations for nonstationary one-dimensional flows
 3.2 Solution by the method of characteristics
 3.3 Rarefaction and compression waves
 3.4 Shock waves and contact surfaces
 References

4 **ONE-DIMENSIONAL FLOWS IN A SIMPLE SHOCK TUBE**
 4.1 Wave systems in a shock tube
 4.2 Hot-gas regions, cold-gas regions
 4.3 Reflection of shock and rarefaction waves
 4.4 Refraction of shock and rarefaction waves at a contact surface
 4.5 Collision of shock waves
 4.6 Collision of rarefaction waves and shock waves
 4.7 Open-end flows
 References

5 **SHOCK TUBES WITH AREA CHANGES**
 5.1 Flows with positive chambrage
 5.2 Flows with negative chambrage
 5.3 Applications to hypervelocity launchers
 References

References
6 BOUNDARY-LAYER EFFECTS
6.1 Sidewall boundary layers induced by shock and rarefaction waves 137
6.2 Laminar, transitional, and turbulent boundary layers 139
6.3 Effects on wave motion, flow quantities, and flow uniformity 159
6.4 Effects on aerodynamic testing and chemical–kinetic studies 166
References 175

7 TWO-DIMENSIONAL STUDIES OF OBLIQUE SHOCK-WAVE REFLECTION AND DIFFRACTION 178
7.1 Oblique shock-wave reflection 178
7.2 Oblique shock-wave diffraction over obstacles 222
7.3 Numerical simulations 250
References 261

8 SPHERICAL AND CYLINDRICAL SHOCK-TUBE ANALOGUES AND FLOW SIMULATION 265
8.1 Spherical-flow simulation 265
References 278

9 HYDRODYNAMIC SHOCK TUBES 279
9.1 Flows in a simple shock tube 279
9.2 Application to underwater spherical flows 287
References 304

10 DUSTY-GAS SHOCK TUBES 306
10.1 Flow in a simple shock tube 306
10.2 Normal reflection of shock structure 320
10.3 Refraction of shock structure 330
10.4 Wedge flow 349
10.5 Corner expansion flow 366
10.6 Boundary-layer flow 379
References 389

11 REAL-GAS EFFECTS ON SHOCK-TUBE FLOWS 392
11.1 Prandtl–Meyer flow of dissociated and ionized gases 392
11.2 Shock structure and stability in ionizing monoatomic gases 443
11.3 Ionizing argon boundary layers 460
References 477

12 IMPLOSION WAVES AND APPLICATIONS 480
12.1 Generation of neutrons and gamma rays 480
12.2 Production of diamonds from graphite 484
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3 Chemical-reaction and diffusion rates produced by implosions</td>
<td>487</td>
</tr>
<tr>
<td>12.4 Generation of strong planar shock waves</td>
<td>493</td>
</tr>
<tr>
<td>References</td>
<td>497</td>
</tr>
<tr>
<td>13 SHOCK-TUBE CONSTRUCTION AND INSTRUMENTATION</td>
<td>499</td>
</tr>
<tr>
<td>13.1 Some examples of existing shock tubes at UTIAS</td>
<td>499</td>
</tr>
<tr>
<td>13.2 Useful instrumentation for shock tubes</td>
<td>517</td>
</tr>
<tr>
<td>References</td>
<td>540</td>
</tr>
<tr>
<td>14 CLOSING COMMENTS</td>
<td>543</td>
</tr>
<tr>
<td>INDEX</td>
<td>545</td>
</tr>
</tbody>
</table>