Contents

Acknowledgements

Abbreviations

1 Introduction

2 The role of the lens in photography

2.1 Imaging
2.2 Recording
2.3 Measurement
2.4 Extension of visual perception
2.5 Self-expression

3 Optical requirements

Optical theory

4 Light and energy

4.1 Dual nature of light
4.2 Wave nature
4.3 The electromagnetic spectrum
4.3.1 The full spectral range
4.3.2 The visible spectrum
4.3.3 Spectral power distribution
4.3.4 Effect on detectors
4.4 Particle nature
4.5 Photometry

5 Properties of light

5.1 Transmission
5.1.1 Transmittance
5.1.2 Colour transmission
5.1.3 Optical transmission density
5.1.4 Optical path length
5.2 Absorption
5.2.1 Absorption law
5.2.2 Spectrally selective absorption
5.2.3 Heat filters
5.2.4 Black filters
5.3 Reflection
5.3.1 Laws of reflection
5.3.2 Types of reflection
5.3.3 Laser speckle
5.3.4 Reflection from dielectric surfaces
5.3.5 Reflection from metal surfaces

5.4 Refraction
5.4.1 Laws of refraction
5.4.2 Total internal reflection
5.4.3 Snell's window
5.4.4 Displacement
5.4.5 Deviation
5.4.6 Scratch treatment
5.4.7 Double refraction
5.4.8 Graded refractive index

5.5 Dispersion
5.5.1 Wavelength dependence
5.5.2 Dispersion by diffraction

5.6 Scattering
5.6.1 Particle size

5.7 Interference
5.7.1 Conditions for interference
5.7.2 Producing interference
5.7.3 Newton's rings
5.7.4 Fringe visibility

5.8 Diffraction
5.8.1 Fraunhofer diffraction
5.8.2 The diffraction grating
5.8.3 The zone plate
5.8.4 Spatial filtering

5.9 Polarization
5.9.1 Natural light
5.9.2 Polarized light and polarizers
5.9.3 Elliptically polarized light
5.9.4 Circularly polarized light

5.10 Attenuation
5.10.1 Inverse square law of illumination
5.10.2 Lambert's cosine law

6 Image formation by simple optical systems

6.1 Types of image
6.2 The pinhole
6.3 Simple lenses
6.3.1 Definitions
6.3.2 Focal length

6.4 Simple mirrors
6.4.1 Plane mirrors
6.4.2 Spherical mirrors
6.4.3 Aspherical mirrors

6.5 Image characteristics
6.5.1 Orientation
6.5.2 Shape
6.5.3 Magnification
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6 Image construction by graphical methods</td>
</tr>
<tr>
<td>6.7 Image properties by calculation</td>
</tr>
<tr>
<td>6.7.1 Sign convention</td>
</tr>
<tr>
<td>6.7.2 Lens conjugate equation</td>
</tr>
<tr>
<td>6.7.3 Newton's equation</td>
</tr>
<tr>
<td>6.7.4 Lagrange invariant</td>
</tr>
<tr>
<td>6.8 Imaging limitations</td>
</tr>
<tr>
<td>7 Image formation by compound lenses</td>
</tr>
<tr>
<td>7.1 Cardinal planes</td>
</tr>
<tr>
<td>7.2 Rear nodal point</td>
</tr>
<tr>
<td>7.3 The thick lens</td>
</tr>
<tr>
<td>7.3.1 Formulae</td>
</tr>
<tr>
<td>7.3.2 Single-element types</td>
</tr>
<tr>
<td>7.4 Thick lens combinations</td>
</tr>
<tr>
<td>8 Combinations of elements</td>
</tr>
<tr>
<td>8.1 Thin lens combinations</td>
</tr>
<tr>
<td>8.1.1 Effective focal length</td>
</tr>
<tr>
<td>8.1.2 Back focal length and back focal distance</td>
</tr>
<tr>
<td>8.1.3 Separation of elements</td>
</tr>
<tr>
<td>8.2 Specific combinations</td>
</tr>
<tr>
<td>8.2.1 Positive–positive systems</td>
</tr>
<tr>
<td>8.2.2 Positive–negative systems</td>
</tr>
<tr>
<td>8.2.3 Negative–positive systems</td>
</tr>
<tr>
<td>8.2.4 Varifocal system</td>
</tr>
<tr>
<td>8.3 Telescopes</td>
</tr>
<tr>
<td>8.4 The compound microscope</td>
</tr>
<tr>
<td>8.5 Field flatteners</td>
</tr>
<tr>
<td>8.6 Relay systems</td>
</tr>
<tr>
<td>9 Optical components and their imaging roles</td>
</tr>
<tr>
<td>9.1 Lenses</td>
</tr>
<tr>
<td>9.1.1 Spherical lenses</td>
</tr>
<tr>
<td>9.1.2 Aspherical lenses</td>
</tr>
<tr>
<td>9.2 Mirrors</td>
</tr>
<tr>
<td>9.2.1 Curved mirrors</td>
</tr>
<tr>
<td>9.2.2 Plane mirrors</td>
</tr>
<tr>
<td>9.3 Beamsplitters</td>
</tr>
<tr>
<td>9.4 Optical flats</td>
</tr>
<tr>
<td>9.5 Cylindrical lenses</td>
</tr>
<tr>
<td>9.6 Lenticular devices</td>
</tr>
<tr>
<td>9.7 Prisms</td>
</tr>
<tr>
<td>9.8 Fresnel lenses and mirrors</td>
</tr>
<tr>
<td>9.9 Optical fibres</td>
</tr>
<tr>
<td>9.9.1 Step index fibres</td>
</tr>
<tr>
<td>9.9.2 Graded index fibres, rods and lenses</td>
</tr>
<tr>
<td>9.10 Holographic optical elements</td>
</tr>
<tr>
<td>9.11 Diffractive optical elements</td>
</tr>
<tr>
<td>9.12 Micro lenses</td>
</tr>
<tr>
<td>9.13 Opto-electronic devices</td>
</tr>
<tr>
<td>9.13.1 Liquid crystal displays (LCDs)</td>
</tr>
<tr>
<td>9.13.2 Light emitting diodes (LEDs)</td>
</tr>
<tr>
<td>9.13.3 Charge coupled devices (CCDs)</td>
</tr>
<tr>
<td>10 Thin-layer coatings</td>
</tr>
<tr>
<td>10.1 Light losses by surface reflections</td>
</tr>
<tr>
<td>10.2 Single anti-reflection layers</td>
</tr>
<tr>
<td>10.3 Double anti-reflection layers</td>
</tr>
<tr>
<td>10.4 Multiple anti-reflection layers</td>
</tr>
<tr>
<td>10.5 Mirror coatings</td>
</tr>
<tr>
<td>10.5.1 Metal substrate</td>
</tr>
<tr>
<td>10.5.2 Dielectric substrate</td>
</tr>
<tr>
<td>10.6 Dielectric filters</td>
</tr>
<tr>
<td>10.6.1 Dichroic filters</td>
</tr>
<tr>
<td>10.6.2 Gradient index filters</td>
</tr>
<tr>
<td>10.7 Coating methods</td>
</tr>
<tr>
<td>11 Aberrations — defects in imaging systems</td>
</tr>
<tr>
<td>11.1 Image formation</td>
</tr>
<tr>
<td>11.1.1 The perfect lens</td>
</tr>
<tr>
<td>11.1.2 Failure of paraxial optics</td>
</tr>
<tr>
<td>11.1.3 Monochromatic aberrations</td>
</tr>
<tr>
<td>11.2 Surface contributions</td>
</tr>
<tr>
<td>11.2.1 Transverse ray aberrations</td>
</tr>
<tr>
<td>11.2.2 Wavefront aberrations</td>
</tr>
<tr>
<td>11.2.3 Aberration terms</td>
</tr>
<tr>
<td>11.2.4 Seidel aberration coefficients</td>
</tr>
<tr>
<td>11.2.5 Ray aberrations as Seidel sums</td>
</tr>
<tr>
<td>11.2.6 Other methods</td>
</tr>
<tr>
<td>11.3 Spherical aberration</td>
</tr>
<tr>
<td>11.3.1 Thin lens imagery</td>
</tr>
<tr>
<td>11.3.2 Aspheric surfaces</td>
</tr>
<tr>
<td>11.3.3 Floating elements</td>
</tr>
<tr>
<td>11.3.4 Portrait lenses</td>
</tr>
<tr>
<td>11.3.5 Additional aberration</td>
</tr>
<tr>
<td>11.4 Coma</td>
</tr>
<tr>
<td>11.5 Astigmatism</td>
</tr>
<tr>
<td>11.6 Field curvature</td>
</tr>
<tr>
<td>11.6.1 Petzval curvature</td>
</tr>
<tr>
<td>11.6.2 Film flatness</td>
</tr>
<tr>
<td>11.6.3 Field flatteners</td>
</tr>
<tr>
<td>11.6.4 Curved field lenses</td>
</tr>
<tr>
<td>11.7 Distortion</td>
</tr>
<tr>
<td>11.7.1 Types</td>
</tr>
<tr>
<td>11.7.2 Measurement</td>
</tr>
<tr>
<td>11.7.3 Calibrated focal length</td>
</tr>
<tr>
<td>11.8 Fundamental lens designs</td>
</tr>
<tr>
<td>11.9 Aberrations of other systems</td>
</tr>
<tr>
<td>11.9.1 Hologram</td>
</tr>
<tr>
<td>11.9.2 Electronic imaging systems</td>
</tr>
<tr>
<td>12 Optical materials</td>
</tr>
<tr>
<td>12.1 Glasses</td>
</tr>
<tr>
<td>Section</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>12.1.1 Origins and composition</td>
</tr>
<tr>
<td>12.1.2 Manufacturing methods</td>
</tr>
<tr>
<td>12.1.3 Properties</td>
</tr>
<tr>
<td>12.1.4 Special glasses</td>
</tr>
<tr>
<td>12.2 Plastics</td>
</tr>
<tr>
<td>12.2.1 Types</td>
</tr>
<tr>
<td>12.2.2 Properties</td>
</tr>
<tr>
<td>12.2.3 Hybrid systems</td>
</tr>
<tr>
<td>12.2.4 Constructional plastics</td>
</tr>
<tr>
<td>12.3 Other materials</td>
</tr>
<tr>
<td>12.3.1 Polarizing and filter materials</td>
</tr>
<tr>
<td>12.3.2 Natural and synthetic quartz</td>
</tr>
<tr>
<td>12.3.3 Fluorite and crystals</td>
</tr>
<tr>
<td>12.3.4 Germanium and others</td>
</tr>
<tr>
<td>13 Colour correction of lenses</td>
</tr>
<tr>
<td>13.1 Chromatic errors</td>
</tr>
<tr>
<td>13.2 Transverse chromatic aberration</td>
</tr>
<tr>
<td>13.3 Achromatic combinations</td>
</tr>
<tr>
<td>13.3.1 Conventional glasses</td>
</tr>
<tr>
<td>13.3.2 Anomalous dispersion</td>
</tr>
<tr>
<td>13.4 Apochromatic lenses</td>
</tr>
<tr>
<td>13.5 Superachromatic lenses</td>
</tr>
<tr>
<td>13.6 Monochromatic lenses</td>
</tr>
<tr>
<td>13.7 Reflective systems</td>
</tr>
<tr>
<td>13.8 UV and IR photography</td>
</tr>
<tr>
<td>14 The speed of a lens</td>
</tr>
<tr>
<td>14.1 Stops, pupils and windows</td>
</tr>
<tr>
<td>14.1.1 Exposure</td>
</tr>
<tr>
<td>14.1.2 Field stop</td>
</tr>
<tr>
<td>14.1.3 Aperture stop</td>
</tr>
<tr>
<td>14.1.4 Pupils</td>
</tr>
<tr>
<td>14.1.5 Pupil magnification</td>
</tr>
<tr>
<td>14.1.6 Entrance window</td>
</tr>
<tr>
<td>14.2 Aperture</td>
</tr>
<tr>
<td>14.2.1 Relative aperture</td>
</tr>
<tr>
<td>14.2.2 Aperture calibration</td>
</tr>
<tr>
<td>14.2.3 Effective aperture</td>
</tr>
<tr>
<td>14.2.4 Numerical aperture</td>
</tr>
<tr>
<td>14.2.5 Transmission aperture</td>
</tr>
<tr>
<td>14.3 Photometry of image formation</td>
</tr>
<tr>
<td>14.3.1 Theoretical principles</td>
</tr>
<tr>
<td>14.3.2 Cos⁴θ law of illumination</td>
</tr>
<tr>
<td>14.3.3 Image illuminance in wide-angle lenses</td>
</tr>
<tr>
<td>14.3.4 Camera exposure</td>
</tr>
<tr>
<td>14.4 Vignetting</td>
</tr>
<tr>
<td>14.4.1 Optical vignetting</td>
</tr>
<tr>
<td>14.4.2 Mechanical vignetting</td>
</tr>
<tr>
<td>14.4.3 Graduated neutral density filters</td>
</tr>
<tr>
<td>14.5 Lens covering power</td>
</tr>
<tr>
<td>15 Lens and camera flare</td>
</tr>
<tr>
<td>15.1 Flare effects</td>
</tr>
<tr>
<td>15.1.1 Veiling glare</td>
</tr>
<tr>
<td>15.1.2 Types and sources of flare</td>
</tr>
<tr>
<td>15.2 Measurement of flare</td>
</tr>
<tr>
<td>15.2.1 Instrumental methods</td>
</tr>
<tr>
<td>15.2.2 Ghost images</td>
</tr>
<tr>
<td>15.3 Reduction of flare</td>
</tr>
<tr>
<td>15.3.1 Lens and camera design</td>
</tr>
<tr>
<td>15.3.2 Lens hood systems</td>
</tr>
<tr>
<td>15.4 Applications of flare</td>
</tr>
<tr>
<td>16 Resolving power of lenses and imaging systems</td>
</tr>
<tr>
<td>16.1 Resolving power</td>
</tr>
<tr>
<td>16.2 The diffraction-limited lens</td>
</tr>
<tr>
<td>16.2.1 Resolving power criteria</td>
</tr>
<tr>
<td>16.2.2 Practical limits</td>
</tr>
<tr>
<td>16.2.3 The aberration-limited lens</td>
</tr>
<tr>
<td>16.3 Resolving power capabilities</td>
</tr>
<tr>
<td>16.3.1 Photographic resolving power</td>
</tr>
<tr>
<td>16.3.2 Silver halide systems</td>
</tr>
<tr>
<td>16.3.3 Video imaging tubes and devices</td>
</tr>
<tr>
<td>16.4 Measurement of resolving power</td>
</tr>
<tr>
<td>16.4.1 Test targets</td>
</tr>
<tr>
<td>16.4.2 Target optical contrast</td>
</tr>
<tr>
<td>16.4.3 Area weighted average resolution</td>
</tr>
<tr>
<td>17 Physical optics of lens systems</td>
</tr>
<tr>
<td>17.1 Image formation</td>
</tr>
<tr>
<td>17.1.1 Spread functions</td>
</tr>
<tr>
<td>17.1.2 Convolution</td>
</tr>
<tr>
<td>17.1.3 Modulation</td>
</tr>
<tr>
<td>17.2 Fourier transform techniques</td>
</tr>
<tr>
<td>17.2.1 Fourier transforms</td>
</tr>
<tr>
<td>17.2.2 The OTF</td>
</tr>
<tr>
<td>17.3 OTF analysis</td>
</tr>
<tr>
<td>17.3.1 Variables</td>
</tr>
<tr>
<td>17.3.2 Spatial frequency</td>
</tr>
<tr>
<td>17.3.3 The MTF</td>
</tr>
<tr>
<td>17.3.4 Cascading</td>
</tr>
<tr>
<td>17.3.5 Graphical presentation</td>
</tr>
<tr>
<td>17.4 Applications of MTF</td>
</tr>
<tr>
<td>17.4.1 Lens design and testing</td>
</tr>
<tr>
<td>17.4.2 Imaging systems</td>
</tr>
<tr>
<td>17.5 Coherent optics</td>
</tr>
<tr>
<td>17.5.1 Abbe's theory</td>
</tr>
<tr>
<td>17.5.2 Fourier transform plane</td>
</tr>
<tr>
<td>17.5.3 Spatial filtering</td>
</tr>
<tr>
<td>18 Design, manufacture and testing of a lens</td>
</tr>
<tr>
<td>18.1 Lens design</td>
</tr>
<tr>
<td>18.2 Computer aided design</td>
</tr>
<tr>
<td>18.3 Stages of production</td>
</tr>
<tr>
<td>18.4 Special fabrication techniques</td>
</tr>
</tbody>
</table>
Contents

18.4.1 Diamond machining 160
18.4.2 Electroforming 160
18.4.3 Replication 160
18.4.4 Aspherics 161

18.5 Lens-testing routines 161
18.5.1 Workshop testing 161
18.5.2 Batch testing 162

18.6 MTF testing routines 162
18.6.1 Determination of lens parameters 162
18.6.2 Contrast measurements and criteria 162
18.6.3 MTF measurement apparatus 164

18.5 Lens-testing routines 161
18.5.1 Workshop testing 161
18.5.2 Batch testing 162

Evaluation and calibration

19.1 The need for testing 168
19.2 Infinity tests 168
19.2.1 The collimator 168
19.2.2 The autocollimator 169
19.2.3 Star testing 169

19.3 Resolution testing 170
19.3.1 Lens-testing charts 170
19.3.2 Test target design 171
19.3.3 The Sayce chart 171

19.4 Testing by projection 172
19.4.1 Camera lenses 172
19.4.2 Video diascope projector 172
19.4.3 Slide projectors and enlargers 172
19.4.4 Cine projectors 173

19.5 Test charts for video systems 173
19.6 Field testing 173
19.7 Camera calibration 173
19.7.1 Principal point location 173
19.7.2 Principal distance 174
19.7.3 Laboratory methods 175

19.8 MTF testing 176

20.1 Sharp focus 178
20.1.1 Photographic space 178
20.1.2 Image sharpness 178
20.2 Geometry of focusing 178
20.3 Mechanical arrangements 179
20.3.1 Fixed focus 179
20.3.2 Symbol focusing 180
20.3.3 Unit focusing 180
20.4 Optical methods 180
20.4.1 Supplementary lenses 180
20.4.2 Front cell focusing 180
20.4.3 Internal focusing 181
20.5 Close focusing 182
20.6 Photographic focusing 182
20.6.1 Focusing with non-visible radiations 182
20.6.2 Photographic focus calibration 183

21 Autofocus and focus maintenance methods 186
21.1 Operational needs 186
21.2 Autofocus enlargers 186
21.2.1 Cam systems 186
21.2.2 Inverter systems 186
21.3 Slide projection 187
21.4 Autofocus cameras 188
21.4.1 Ranging systems 188
21.4.2 Image contrast measurement 190
21.4.3 Exit pupil measurements 192
21.5 Autofocus by phase detection 193
21.5.1 Phase detection 193
21.5.2 Principles 193
21.5.3 The autofocus module 195
21.5.4 Detector arrays 195
21.5.5 Autofocus flash assist 196
21.5.6 Additional AF functions 196

22 Depth of field and depth of focus 200
22.1 Depth of field parameters 200
22.1.1 Sharpness 200
22.1.2 Visual acuity 200
22.1.3 Circle of confusion 201

22.2 Depth of field equations 202
22.2.1 Derivation of equations 202
22.2.2 Distribution of depth of field 205

22.3 Depth of field in practice 205
22.3.1 Departures from theory 205
22.3.2 Hyperfocal distance 206
22.3.3 Estimating depth of field 207
22.3.4 Variable field curvature 207

22.4 Close-up depth of field 207
22.4.1 Equations 207
22.4.2 Background sharpness 208
22.4.3 Immersion techniques 208
22.4.4 Holographic techniques 208

22.5 Depth of focus 208
22.5.1 Equations 208
22.5.2 Relationship to depth of field 209
22.5.3 Practical considerations 209
22.5.4 Image surface considerations 209
22.5.5 Electron microscopy 210

22.6 Use of movements 211

22.7 Depth of field scales and calculators 212
22.7.1 Scales 212
22.7.2 Calculators 213
22.7.3 DOF calculators for large format cameras 213

22.8 Special techniques 214
22.8.1 Aerial image relay system 214
22.8.2 Multi-plane scanning 215
22.8.3 Confocal microscopy 215
Contents

23 Perspective and projection

- **23.1 Concepts of perspective** 217
 - 23.1.1 Viewpoint 217
 - 23.1.2 Camera viewpoint 218
 - 23.1.3 Viewing distance 219
 - 23.1.4 Perspective distortions 219

- **23.2 Wide-angle perspective** 220

- **23.3 Portrait lens perspective** 221

- **23.4 Perspective of tilted planes** 221

- **23.5 Other perspectives** 222
 - 23.5.1 Orthographic perspective 222
 - 23.5.2 Panoramic perspective 223

- **23.6 Projection formulae** 223

24 Evolution of the photographic lens

- **24.1 Introduction** 227

- **24.2 Prephotography 1800–1839** 227
 - 24.2.1 Optical instruments 227
 - 24.2.2 Optical glass 227
 - 24.2.3 Lens manufacture 228
 - 24.2.4 Lens design 229
 - 24.2.5 The camera obscura 230
 - 24.2.6 The Chevalier Landscape lens 231
 - 24.2.7 Systematic design of lenses 231

- **24.3 The first camera lenses** 231
 - 24.3.1 Optics of the Daguerreotype camera 231
 - 24.3.2 Wolcott mirror camera 232

- **24.4 Astigmatic lenses** 233
 - 24.4.1 Colour correction 233
 - 24.4.2 Achromatic doublets 234
 - 24.4.3 Orthoscopic lenses 234
 - 24.4.4 The Petzval lens 235
 - 24.4.5 The astigmatic lens 236

- **24.5 Anastigmatic lenses** 237
 - 24.5.1 The first anastigmats 237
 - 24.5.2 Symmetrical anastigmats 237
 - 24.5.3 The Cooke triplet 237
 - 24.5.4 Meniscus anastigmats 238

- **24.6 Other types of lenses** 238

25 General properties of a lens

- **25.1 Optical properties** 242
 - 25.1.1 Focal length 242
 - 25.1.2 Aperture 242
 - 25.1.3 Field of view 242
 - 25.1.4 Format 243
 - 25.1.5 Performance 243

- **25.2 Mechanical properties** 245
 - 25.2.1 Configuration data 245
 - 25.2.2 The lens barrel 247
 - 25.2.3 The lens mount 249
 - 25.2.4 Flange focal distance 249
 - 25.2.5 The iris diaphragm 251

- **25.3 Cleaning lens surfaces** 254

26 The standard lens

- **26.1 Standard focal length** 256
- **26.2 Lens designs** 257
- **26.3 Lens limitations** 260

27 Large-aperture lenses

- **27.1 Maximum aperture limits** 261
- **27.2 Aperture requirements** 262
- **27.3 Design features** 262
 - 27.3.1 Standard lenses 262
 - 27.3.2 Wide-angle lenses 263
 - 27.3.3 Long focus lenses 263
 - 27.3.4 Catadioptric lenses 264
 - 27.3.5 Image intensifier optics 264

28 Medium long focus lenses

- **28.1 Lens parameters** 266
- **28.2 Design types** 266
- **28.3 Focusing** 268

29 Extreme long focus lenses

- **29.1 Lens parameters** 269
- **29.2 Resolving power** 269
- **29.3 Lens design** 269
- **29.4 Practical considerations** 270

30 The telephoto lens

- **30.1 The telephoto principle** 272
- **30.2 Design evolution** 272
 - 30.2.1 Early designs 272
 - 30.2.2 Distortion-free designs 273
 - 30.2.3 Modern designs 273
- **30.3 Super telephoto designs** 273

31 Convertible lenses

- **31.1 Design principles** 278
- **31.2 Design variants** 278
 - 31.2.1 Dual focal length 278
 - 31.2.2 Interchangeable components 279
 - 31.2.3 Other possibilities 279

32 Short focus wide-angle lenses

- **32.1 Imaging characteristics** 280
 - 32.1.1 Field of view 280
 - 32.1.2 Covering power 280
 - 32.1.3 Distortion 281
 - 32.1.4 Back focal distance 282
- **32.2 Lens designs** 283

33 Retrofocus wide-angle lenses

- **33.1 The retrofocus principle** 286
 - 33.1.1 Early designs 286
 - 33.1.2 Simple optics 286
 - 33.1.3 Distortion 287
44 Aerial lenses 354
44.1 Environmental considerations 354
44.2 Lens designs 354
44.2.1 Hand-held cameras 354
44.2.2 Reconnaissance lenses 354
44.2.3 Survey lenses 355
45 Projection lenses 359
45.1 Imaging requirements 359
45.1.1 Magnification 359
45.1.2 Field of view 359
45.1.3 Curvature of field 360
45.1.4 Image orientation 360
45.1.5 Image properties 360
45.2 Image photometry 361
45.3 Depth of focus 361
45.4 Lens types 361
45.4.1 Simple and triplet lenses 361
45.4.2 Petzval lens 361
45.4.3 Double Gauss lens 361
45.4.4 Telephoto and retrofocus 362
45.4.5 Varifocal and zoom lenses 363
45.4.6 PC lenses 363
45.5 Lens attachments 363
45.5.1 Zoom attachments 363
45.5.2 Anamorphic attachments 364
45.6 Video projection lenses 364
46 Anamorphic systems 366
46.1 Optical requirements 366
46.2 Optical design principles 366
46.2.1 Crossed slits 366
46.2.2 Cylindrical systems 367
46.2.3 Prismatic systems 367
46.2.4 Mirror systems 369
46.3 Anamorphics in practice 369
47 Soft focus lenses 370
47.1 Imaging requirements 370
47.2 Soft focus methods 370
47.2.1 Conventional lenses 370
47.2.2 Perforated diaphragm plates 371
47.2.3 Floating elements 371
48 Perspective control lenses 373
48.1 Imaging requirements 373
48.2 Tilt and shift lenses 374
48.3 Mechanical arrangements 374
48.4 PC projection lenses 375
49 Ultraviolet lenses 377
49.1 Spectral considerations 377
49.1.1 Spectral transmission 377
49.1.2 Chromatic correction 377
49.2 Contemporary designs 378
49.2.1 Catoptric systems 378
49.2.2 Dioptric systems 378
50 Infra-red lenses 380
50.1 Spectral considerations 380
50.1.1 Imaging regions 380
50.1.2 Optical materials 380
50.2 Contemporary designs 380
50.2.1 Conventional lenses 380
50.2.2 IR corrected lenses 381
50.2.3 Thermal imaging lenses 381
51 Lenses for cinematography 384
51.1 Formats 384
51.2 Design requirements 384
51.3 Operational requirements 384
51.4 8 mm cine lenses 385
51.5 16 mm and 35 mm cine lenses 385
51.5.1 Large aperture lenses 385
51.5.2 Wide-angle lenses 386
51.5.3 Zoom and anamorphic lenses 386
52 Video lenses 388
52.1 Video imaging 388
52.2 Optical performance 388
52.3 Design requirements 389
52.3.1 Mechanical arrangements 389
52.3.2 Colour correction 391
52.4 Lens types 392
52.4.1 Zoom lenses 392
52.4.2 Conventional lenses 393
52.4.3 Special purpose lenses 394
52.5 Lens attachments 394
53 Lens attachments and accessories 398
53.1 Afocal converters 398
53.1.1 Principles 398
53.1.2 Telescopic devices 398
53.1.3 Applications 398
53.2 Teleconverter devices 400
53.2.1 Principles 400
53.2.2 Performance 401
53.3 Attachment of optical systems 401
53.3.1 Microscopes 401
53.3.2 Other devices 402
53.4 Supplementary lenses 403
53.4.1 Positive (close-up) lenses 403
53.4.2 Negative lenses 403
53.5 Optical filters 404
53.5.1 Spectral properties 404
53.5.2 Filter factor 404
53.5.3 Optical quality 405
53.5.4 Filter sizes 406
53.5.5 Focusing 406
53.5.6 Filter applications 406
53.6 Image modification devices 407
53.6.1 Direction sensitive devices 407
53.6.2 Image degradation devices 408
Photographic optical systems

54 Viewfinder systems 413

54.1 Viewfinder functions 413
54.2 Human vision 413
 54.2.1 Anatomy 413
 54.2.2 Refraction 415
 54.2.3 Resolving power 415
 54.2.4 Dark adaptation 415
 54.2.5 Flicker 415
54.3 Viewfinder properties 416
 54.3.1 Magnification 416
 54.3.2 Image orientation 416
 54.3.3 Aberrations 417
54.4 Viewfinder errors 417
 54.4.1 Aiming errors 417
 54.4.2 Parallax error 418
54.5 Interactive viewfinders 418

55 Direct viewfinder systems 420

55.1 The frame finder 420
55.2 The brilliant finder 420
55.3 The Newton finder 420
55.4 The reversed Galilean finder 421
55.5 The van Albeda finder 422
55.6 The universal finder 423
 55.6.1 The zoom finder 423
 55.6.2 The Kepler finder 423
 55.6.3 The universal range-viewfinder 425
 55.6.4 The director's viewfinder 425
55.7 Viewfinders for autofocus compact cameras 425

56 Screen viewfinder systems 427

56.1 The focusing screen 427
 56.1.1 Screen properties 427
 56.1.2 Screen variants 427
 56.1.3 The screen image 427
 56.1.4 The focusing magnifier 428
56.2 Reflex systems 429
 56.2.1 Image properties 429
 56.2.2 The reflex mirror 430
56.3 The pentaprism viewfinder 434
56.4 The viewfinder eyepiece 435
 56.4.1 Optical principles 435
 56.4.2 The focusing telescope 436
 56.4.3 Eyepiece dioptic correction 436
56.5 Video viewfinders 437

57 Viewfinder focusing 438

57.1 The human factor 438
57.2 Simple focusing systems 438
57.2.1 Focusing by estimation 438
57.2.2 Stadiametric rangefinders 438
57.3 Optical coincidence rangefinders 439
 57.3.1 Principles 439
 57.3.2 Coupled rangefinder 439
 57.3.3 Rangefinder accuracy 441
57.4 Screen focusing 441
 57.4.1 Focusing accuracy 441
 57.4.2 Contrast characteristics 443
 57.4.3 Special focusing techniques 443
57.5 Passive focusing aids 443
 57.5.1 The split-image rangefinder 443
 57.5.2 Microprism arrays 444

58 The optics of camera movements 448

58.1 Degrees of freedom 448
 58.1.1 View camera design 448
 58.1.2 Translation movements 448
 58.1.3 Rotation movements 448
58.2 Lens covering power 449
 58.2.1 Extra covering power 449
 58.2.2 Displacement limits 450
58.3 Control of image sharpness 450
 58.3.1 Tilts and swings 450
 58.3.2 Limits 451
 58.3.3 The Scheimpflug rule or condition 452
 58.3.4 Yaw-free movements 454
 58.4 Control of image shape 455

59 Optics of systems with moving film 457

59.1 Intermittent motion 457
 59.1.1 Framing rate 457
 59.1.2 Image quality 457
 59.1.3 Limitations 458
59.2 Continuous motion 458
 59.2.1 Image motion compensation 458
 59.2.2 The strip camera 459
 59.2.3 The streak camera 459
 59.2.4 The periphery camera 460
 59.2.5 The panoramic camera 460
59.3 Rotating prism compensators 462
 59.3.1 Image displacement 462
 59.3.2 Practical systems 462
 59.4 Image stabilization 463
 59.4.1 Camera shake 463
 59.4.2 Stabilizing systems 464

60 Scanning optics 467

60.1 Scanning systems 467
 60.1.1 Mechanical scanning 467
 60.1.2 Rotating mirror systems 467
 60.1.3 Nipkow disc system 467
 60.1.4 Airborne scanners 468
60.2 Film scanning 469
60.3 Laser scanning 470
 60.3.1 Polygon scanners 470
 60.3.2 Scanning lenses 472
 60.3.3 Dot generation 473
Contents

66.2 Light meters
 66.2.1 The photodetector 539
 66.2.2 Acceptance angle 541
 66.2.3 Spot meters 541
 66.2.4 Optical attachments 541
 66.2.5 Incident light measurements 542

66.3 In-camera metering systems
 66.3.1 Photocell location 543
 66.3.2 Photocell optics 545
 66.3.3 Segmented photocells 546
 66.3.4 OTF measurements 546

67 Optics of lighting systems
 67.1 Lighting 549
 67.1.1 Attributes 549
 67.1.2 Illumination 549
 67.1.3 Lighting ratio 549
 67.1.4 Shadows 549
 67.1.5 Artificial sources 550
 67.2 Daylight 551
 67.3 Luminaires
 67.3.1 Spotlights 553
 67.3.2 Floodlights 554
 67.3.3 Fibre optic systems 554
 67.4 Electronic flash
 67.4.1 Optics of flash units 556

67.4.2 Red eye effects 557
67.4.3 Flash guide number 557

68 Optics for video systems 559
 68.1 Video cameras 559
 68.1.1 The colour splitter 559
 68.1.2 The three-chip camera 559
 68.1.3 Aliasing 561
 68.1.4 Spatial offset 562
 68.1.5 Filter arrays 562
 68.2 Optical multiplexing 563
 68.3 Telecine 564
 68.4 Video disc 564

69 Optics of holography 567
 69.1 Outline theory 567
 69.1.1 Wavefront reconstruction 567
 69.1.2 Mathematical outline 567
 69.1.3 Fringe patterns 568
 69.1.4 Hologram properties 568
 69.2 Holographic techniques 569
 69.2.1 Illumination system 569
 69.2.2 Recording requirements 570

Index 573