CONTENTS

CONTRIBUTORS ix
PREFACE xi
ACKNOWLEDGEMENTS xiii

CHAPTER 1 THE HISTORY OF MOLECULAR EMISSION CAVITY ANALYSIS 1
A. Townshend

CHAPTER 2 INTRODUCTION AND BASIC PRINCIPLES 5
A. C. Calokerinos

2.1 Flame Chemiluminescence 5
2.2 Historical Origins 6
2.3 Hydrogen Diffusion Flame 8
2.4 Salet Phenomenon 10
2.5 Molecular Emission Spectroscopy 12
2.6 Flame Photometric Detector 13
2.7 Molecular Emission Cavity Analysis 13
 2.7.1 Basic Principles 14
 2.7.2 The Importance of the Salet Phenomenon in MECA 25
 2.7.3 Sample Introduction into the Cavity 28
 2.7.4 Molecular Emissions and Spectra 35
2.8 Conclusions 38
References 39

CHAPTER 3 INSTRUMENTATION AND AUTOMATION 43
N. Grekas

3.1 Introduction 43
3.2 Instrumentation 44
 3.2.1 Emission Burner Unit 44
 3.2.2 Cavity Probe and Holder Unit 45
 3.2.2.1 Cavity Probe 45
 3.2.2.2 Cavity Holder 50
 3.2.3 Optical Unit – Readout System 53
 3.2.4 Gas Generation Systems 54
3.3 Commercial Instruments 55
 3.3.1 Conventional MECA 55
CHAPTER 4 SULPHUR, SELENIUM, AND TELLURIUM

E. Henden

4.1 Introduction

4.2 Sulphur Compounds

4.2.1 Determination of Sulphur by Conventional MECA

4.2.1.1 Inorganic Sulphur Compounds

4.2.1.2 Organic Sulphur Compounds

4.2.1.3 Sulphur Compounds in Detergents

4.2.1.4 Sulphur in Solids

4.2.1.5 Indirect Determination Based on the S$_2$ Emission

4.2.1.6 Automated Conventional MECA

4.2.2 Gas Generation Systems

4.2.2.1 Determination of Sulphur

4.2.2.2 Automated Gas Generation Systems

4.2.3 Determination of Sulphur Compounds after Gas and Liquid Chromatographic Separation

4.3 Selenium and Tellurium Compounds

4.3.1 Determination of Selenium and Tellurium by Conventional MECA

4.3.1.1 Inorganic Selenium and Tellurium Compounds

4.3.1.2 Organic Selenium and Tellurium Compounds

4.3.2 Determination of Selenium and Tellurium by Gas Generation Systems

4.4 Conclusions

References

CHAPTER 5 ARSENIC, ANTIMONY, BORON, SILICON, GERMANIUM AND TIN

M. Burguera and J. L. Burguera

5.1 Introduction

5.2 Arsenic and Antimony

5.3 Boron

5.4 Silicon
CONTENTS

5.5 Germanium 123
5.6 Tin 125
5.7 Conclusions 128
References 129

CHAPTER 6 NITROGEN, PHOSPHORUS, AND CARBON 131

D. A. Stiles and A. Townshend

6.1 Introduction 131
6.2 Nitrogen Compounds 132
 6.2.1 General 132
 6.2.2 Indirect Methods 133
 6.2.3 Direct Methods 135
 6.2.3.1 Determination of Ammonia and Ammonium Ions 137
 6.2.3.2 Determination of Nitrite and Nitrate 143
6.3 Phosphorus Compounds 148
 6.3.1 General 148
 6.3.2 Inorganic Phosphorus Determinations 148
 6.3.3 Organic Phosphorus Determinations 154
6.4 Carbon Compounds 162
References 168

CHAPTER 7 HALOGENS AND METALS 171

D. A. Stiles

7.1 Introduction 171
7.2 Halogens 171
 7.2.1 Fluorine 172
 7.2.2 Chlorine, Bromine and Iodine 174
7.3 Metals 187
7.4 Conclusions 192
References 192

INDEX 195