The Electrochemistry of Novel Materials

EDITORS

Jacek Lipkowski and Philip N. Ross
Contents

1. Electrode Materials and Strategies for Photoelectrochemistry 1
 by N. Alonso-Vante and H. Tributsch

 1.1 Introduction and Scope 1
 1.2 Mechanism of Interfacial Reactions 2
 1.3 Parameters Affecting Electrode Behavior 6
 1.4 Electrocatalytic Processes in Semiconducting Materials 22
 1.5 Photoelectrocatalytic Process (Fuel Generation) 36
 1.6 Photoconversion Process (Current Generation) 42
 1.7 Challenges for Research and Application 49

 1.8 Summary and Outlook 54
 Acknowledgments 55
 References 55

2. Polymeric Materials for Lithium Batteries 65
 by M. Armand, J. Y. Sanchez, M. Gauthier, and Y. Choquette

 2.1 Introduction 65
 2.2 Principles and Requirements for Electrochemical Energy Storage 66
 2.3 Polymers as Solid-State Ionizing Solvents 69
 2.4 Polymers as Electrode Materials for Lithium Batteries 85
CONTENTS

2.5 Cell Geometry and Power Densities 90
2.6 EMFs and Stability Windows 93
2.7 Realizations and Prototypes 96
2.8 Safety 102
2.9 Conclusions 105
References 106

3. Insertion Compounds for Lithium Rocking Chair Batteries 111
by B. Scrosati

3.1 Introduction 111
3.2 Lithium Batteries 112
3.3 Criteria for the Selection of Insertion Electrodes for Rocking Chair Batteries 116
3.4 Carbon Insertion Materials 117
3.5 Layered Lithium Metal Oxides 125
3.6 Manganese Oxides 132
3.7 Other Types of Rocking Chair Configurations 135
3.8 Conclusions 136
References 137

4. Thin Polymer Films on Electrodes: A Physicochemical Approach 141
by K. Doblerhofer

4.1 Introduction 141
4.2 The Permeability of Nonionic Polymers 148
4.3 Ionic Polymers on Electrodes 165
4.4 Electronically Conducting Polymer Films 189
Acknowledgments 200
References 201

5. Transition Metal Oxides: Versatile Materials for Electrocatalysis 207
by S. Trasatti

5.1 Introduction 207
5.2 Properties of Oxides for Electrodes 210
5.3 Interfacial Properties 219
5.4 Electrocatalytic Properties 238
5.5 Factors of Electrocatalysis 259
5.6 Problems of Electrode Stability 262
5.7 Conclusions and Prospects 271
References 275
6. Electrochemistry of UO₂ Nuclear Fuel 297
by D. W. Shoesmith, S. Sunder, and W. H. Hocking

6.1 Introduction 297
6.2 Fuel Composition 299
6.3 Structural Properties 299
6.4 Electrical Properties 301
6.5 Electrochemical Properties 303
6.6 Thermodynamic Properties 305
6.7 Surface Composition Under Electrochemical Conditions 307
6.8 Anodic Dissolution 313
6.9 Redox Reactions on UO₂ Surfaces 321
6.10 Electrochemical Reactivity 331
Acknowledgments 332
References 332

7. Electrochemistry of Clays and Zeolites 339
by M. D. Baker and C. Senaratne

7.1 Introduction 339
7.2 Zeolites and Clays: Structure and Properties Pertaining to Electrode Modification 340
7.3 Fabrication of Electrodes 344
7.4 Historical Perspective 347
7.5 Mechanism of Electrochemistry Occurring at Clay- and Zeolite-Modified Electrodes 348
7.6 Analytical Applications 352
7.7 Electrocatalysis 359
7.8 Ion Exchange in Clays and Zeolites 367
7.9 Molecular Wires 371
7.10 Layered Double Hydroxides (Hydrotalcite Clays) 374
7.11 Studies of Diffusion 376
7.12 Conclusion 376
References 376

Index 381