Gas Chromatography
A Practical Approach

Edited by
P. J. BAUGH

Department of Chemistry and Applied Chemistry
University of Salford
The Crescent, Salford

© IRL PRESS
at
OXFORD UNIVERSITY PRESS
Oxford New York Tokyo
Contents

List of contributors xvii
Abbreviations xix

1. Introduction to the theory of chromatographic separations with reference to gas chromatography 1
 Keith D. Bartle
 1. Introduction and history of GC 1
 2. The GC chromatogram 4
 3. Resolution in GC 5
 4. Band broadening in GC 6
 5. GC columns 7
 6. Speed of GC analysis 8
 7. Retention in GC 10
 Effect of temperature 10
 Temperature programming 10
 Dependence of retention on solute properties in GC 12
 Retention indices 12
 References 13

2. Gas chromatography instrumentation, operation, and experimental considerations 15
 Andrew Tipler
 1. Introduction 15
 2. Instrumental components and function 15
 Fundamental components 15
 The chromatographic oven 16
 Pneumatics 17
 Sample introduction 20
 Gas chromatographic detectors 31
 3. Operation and experimental considerations 38
 Where to start 39
3. Development, technology, and utilization of capillary columns for gas chromatography

Peter A. Dawes

1. Introduction
2. Types of capillary column
3. Evolution of the modern capillary column
 Column support material
 Stationary phase criteria and development
 Types of stationary phase for partitioning
 Manufacturing methods
4. Column performance evaluation
 Resolving power
 Determination of efficiency and performance parameters
 Kövats' retention index
 Speed of analysis
 Sample capacity
 Inertness
 Bleed
5. Column selection
 Stationary phase
 Internal diameter
 Film thickness
 Length
6. Care of a capillary column
 Protection of fused silica fabric and installation hints
 Column contamination
 Column operation

References
Contents

4. Derivatization reactions involving one reagent 137
 Silylation reactions 137
 Acylation reactions 141
 Alkylation reactions 145
 Condensation reactions 150
 Derivatives of miscellaneous types 152

5. Mixed derivatives 154
 Silyl-acyl and silyl-carbamate derivatives 154
 Acyl/acyl derivatives 156
 Acyl/alkyl derivatives 157
 Acyl/amide derivatives 158
 Silyl/alkyl oxime and acyl/oxime derivatives 159
 Derivatization procedures for prostaglandins 161

6. Bifunctional and mixed bifunctional monofunctional derivatives 162
 Bifunctional silylating agents 163
 Aldehydes and ketones as bifunctional derivatizing agents 163
 Alkyl boronates as bifunctional derivatizing agents 164

7. Derivatives used for separation of enantiomers 166
 Acylation with chiral reagents 166
 Chiral alkylating reagents 168
 Formation of diastereomeric amides 168

References 169

6. Gas chromatography in analytical toxicology: principles and practice 171
 Robert J. Flanagan

1. Introduction 171

2. Use of GC in analytical toxicology 172
 Sample collection and storage 172
 Sample preparation 173
 Columns and column packings 181
 Detectors 186
 General considerations 188

3. Applications of GC in analytical toxicology 192
 Screening for unknowns 193
 Drugs 194
 Pesticides 200
 Gases, solvents, and other poisons 202

4. Conclusions 206

Acknowledgements 208

References 208
Contents

7. Gas chromatography in clinical chemistry 213
 Jagadish Chakraborty
 1. Introduction 213
 2. Applications of GC 214
 Organic volatiles 214
 Organic acids 219
 Cholesterol and related compounds 226
 Amines and related compounds 229
 Polyols and sugars 232
 3. Conclusions 235
 References 235

8. Chiral separations by gas chromatography 237
 David R. Taylor
 1. Introduction 237
 Terminology and definitions 238
 2. Role of derivatization in chiral separations by GC 240
 Typical protocols for diastereoisomeric derivatization 243
 3. GC on chiral stationary phases (CSP) 245
 Phases based on monomeric peptides 247
 Phases based on polymeric amides 252
 Chiral GC using metal complexation 260
 Inclusion phases for chiral GC 269
 4. Applications of chiral stationary phases in GC 277
 5. Conclusions and future prospects 278
 References 278

9. Environmental analysis using gas chromatography 283
 Gerry A. Best and J. Paul Dawson
 1. Introduction 283
 Pathways to the environment 283
 Instrumentation 285
 2. The need for GC analysis of environmental samples 285
 Pollution problems 285
 Statutory regulations 285
 3. Analytical quality control of GC data 286
 4. Isolation of target compounds from the sample matrix 289
 xiii
Contents

Contamination 290
Procedure for the extraction of organochlorine compounds and PCBs from water 291
Procedure for the extraction of organochlorine compounds from samples of effluent 293
Extraction of organochlorine compounds from sediment samples 295
Extraction of organochlorine compounds from tissue samples 297

5. Clean-up procedures 297
Clean-up and separation of extracts using alumina and silica columns 298
Modified method for clean-up and separation using alumina/silica nitrate and silica gel 300
Clean-up and separation of extracts using solid-phase extraction (SPE) cartridges 303
Extraction of semi-volatile compounds from water samples using extraction discs 304

6. Analysis of pentachlorophenol 306

7. Determination of non-persistent pesticides present in water samples 307
Extraction and determination of organophosphorus and organonitrogen compounds in water 308
Extraction and clean-up of permethrin from water samples 310
Extraction and determination of phenoxyacetic acid type of herbicides 311

8. GC separation and quantification of target compounds 313
Choice of column 313
Calculation of concentration in samples using the internal standard method 315
Typical GC chromatograms for target compound analysis 315

9. Sampling and analysis of gases and vapours 316
Sampling 316
Desorption of components 322

10. Determination of types of oil in pollution samples 323
Oil fingerprinting 323
Oil fingerprinting—GC operating conditions 326

References 327

10. The role of gas chromatography in petroleum exploration 331
Gareth E. Harriman

1. Introduction 331
2. Composition of crude oils and source rock extracts 332
Contents

3. Whole oil GC .. 333
4. GC analysis of fractions isolated from crude oils and source rock extracts ... 337
5. GC–MS analysis of fractions isolated from crude oils and source rock extracts 343
6. Conclusions ... 354
References .. 356

11. Combined gas chromatography–mass spectrometry

Richard P. Evershed

1. General considerations 359
2. GC–MS instrumentation 360
 - Use of packed columns 360
 - Use of capillary columns 360
 - Ion sources ... 362
 - Use of different mass analysers 364
 - Ion detection ... 367
 - Data collection and interpretation 368
3. Applications .. 368
 - Mixture analysis 368
 - Trace analysis 381
References .. 390

Appendices

A1 Combined gas chromatography–Fourier transform infrared spectroscopy

Peter Jackson

1. Introduction .. 393
2. Techniques description 395
 - Lightpipe GC–FTIR 395
 - Low-temperature matrix isolation GC–FTIR 395
 - Low-temperature solid sample deposition GC–FTIR 397
3. GC–FTIR sensitivity ... 398
4. GC–FTIR resolution ... 399
5. GC–FTIR spectra .. 402
6. Quantitative GC–FTIR 404
7. Multiple detector systems 406

xv
Contents

8. GC–FTIR applications 406
 Industrial applications: commercial alcohols 407
 Advanced sampling techniques 408
 Pesticides analysis 410

9. Summary 411
 Acknowledgements 413
 References 413

A2 Suppliers of specialist items 415

Index 417