POWER SYSTEM STABILITY AND CONTROL

P. KUNDUR
Vice-President, Power Engineering
Powertech Labs Inc., Surrey, British Columbia
Formerly Manager
Analytical Methods and Specialized Studies Department
Power System Planning Division, Ontario Hydro, Toronto, Ontario
and
Adjunct Professor
Department of Electrical and Computer Engineering
University of Toronto, Toronto, Ontario

Edited by
Neal J. Balu
Mark G. Lauby
Power System Planning and Operations Program
Electrical Systems Division
Electric Power Research Institute
3412 Hillview Avenue
Palo Alto, California

McGraw-Hill, Inc.
New York San Francisco Washington, D.C. Auckland Bogotá
Caracas Lisbon London Madrid Mexico City Milan
Montreal New Delhi San Juan Singapore
Sydney Tokyo Toronto
Contents

FOREWORD xix

PREFACE xxii

PART I GENERAL BACKGROUND

1 GENERAL CHARACTERISTICS OF MODERN POWER SYSTEMS 3

1.1 Evolution of electric power systems 3
1.2 Structure of the power system 5
1.3 Power system control 8
1.4 Design and operating criteria for stability 13
References 16

2 INTRODUCTION TO THE POWER SYSTEM STABILITY PROBLEM 17

2.1 Basic concepts and definitions 17
2.1.1 Rotor angle stability 18
2.1.2 Voltage stability and voltage collapse 27
2.1.3 Mid-term and long-term stability 33
2.2 Classification of stability 34
2.3 Historical review of stability problems 37
References 40
PART II EQUIPMENT CHARACTERISTICS AND MODELLING

3 SYNCHRONOUS MACHINE THEORY AND MODELLING

3.1 Physical description
3.1.1 Armature and field structure
3.1.2 Machines with multiple pole pairs
3.1.3 MMF waveforms
3.1.4 Direct and quadrature axes

3.2 Mathematical description of a synchronous machine
3.2.1 Review of magnetic circuit equations
3.2.2 Basic equations of a synchronous machine

3.3 The $dq0$ transformation

3.4 Per unit representation
3.4.1 Per unit system for the stator quantities
3.4.2 Per unit stator voltage equations
3.4.3 Per unit rotor voltage equations
3.4.4 Stator flux linkage equations
3.4.5 Rotor flux linkage equations
3.4.6 Per unit system for the rotor
3.4.7 Per unit power and torque
3.4.8 Alternative per unit systems and transformations
3.4.9 Summary of per unit equations

3.5 Equivalent circuits for direct and quadrature axes

3.6 Steady-state analysis
3.6.1 Voltage, current, and flux linkage relationships
3.6.2 Phasor representation
3.6.3 Rotor angle
3.6.4 Steady-state equivalent circuit
3.6.5 Procedure for computing steady-state values

3.7 Electrical transient performance characteristics
3.7.1 Short-circuit current in a simple RL circuit
3.7.2 Three-phase short-circuit at the terminals of a synchronous machine
3.7.3 Elimination of dc offset in short-circuit current

3.8 Magnetic saturation
3.8.1 Open-circuit and short-circuit characteristics
3.8.2 Representation of saturation in stability studies
3.8.3 Improved modelling of saturation

3.9 Equations of motion
Contents

3.9.1 Review of mechanics of motion 128
3.9.2 Swing equation 128
3.9.3 Mechanical starting time 132
3.9.4 Calculation of inertia constant 132
3.9.5 Representation in system studies 135

References 136

4 SYNCHRONOUS MACHINE PARAMETERS 139

4.1 Operational parameters 139
4.2 Standard parameters 144
4.3 Frequency-response characteristics 159
4.4 Determination of synchronous machine parameters 161

References 166

5 SYNCHRONOUS MACHINE REPRESENTATION IN STABILITY STUDIES 169

5.1 Simplifications essential for large-scale studies 169
5.1.1 Neglect of stator $p\psi$ terms 170
5.1.2 Neglecting the effect of speed variations on stator voltages 174
5.2 Simplified model with amortisseurs neglected 179
5.3 Constant flux linkage model 184
5.3.1 Classical model 184
5.3.2 Constant flux linkage model including the effects of subtransient circuits 188
5.3.3 Summary of simple models for different time frames 190
5.4 Reactive capability limits 191
5.4.1 Reactive capability curves 191
5.4.2 V curves and compounding curves 196

References 198

6 AC TRANSMISSION 199

6.1 Transmission lines 200
6.1.1 Electrical characteristics 200
6.1.2 Performance equations 201
6.1.3 Natural or surge impedance loading 205
6.1.4 Equivalent circuit of a transmission line 206
6.1.5 Typical parameters 209
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.6</td>
<td>Performance requirements of power transmission lines</td>
<td>211</td>
</tr>
<tr>
<td>6.1.7</td>
<td>Voltage and current profile under no-load</td>
<td>211</td>
</tr>
<tr>
<td>6.1.8</td>
<td>Voltage-power characteristics</td>
<td>216</td>
</tr>
<tr>
<td>6.1.9</td>
<td>Power transfer and stability considerations</td>
<td>221</td>
</tr>
<tr>
<td>6.1.10</td>
<td>Effect of line loss on V-P and Q-P characteristics</td>
<td>225</td>
</tr>
<tr>
<td>6.1.11</td>
<td>Thermal limits</td>
<td>226</td>
</tr>
<tr>
<td>6.1.12</td>
<td>Loadability characteristics</td>
<td>228</td>
</tr>
<tr>
<td>6.2</td>
<td>Transformers</td>
<td>231</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Representation of two-winding transformers</td>
<td>232</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Representation of three-winding transformers</td>
<td>240</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Phase-shifting transformers</td>
<td>245</td>
</tr>
<tr>
<td>6.3</td>
<td>Transfer of power between active sources</td>
<td>250</td>
</tr>
<tr>
<td>6.4</td>
<td>Power-flow analysis</td>
<td>255</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Network equations</td>
<td>257</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Gauss-Seidel method</td>
<td>259</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Newton-Raphson (N-R) method</td>
<td>260</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Fast decoupled load-flow (FDLF) methods</td>
<td>264</td>
</tr>
<tr>
<td>6.4.5</td>
<td>Comparison of the power-flow solution methods</td>
<td>267</td>
</tr>
<tr>
<td>6.4.6</td>
<td>Sparsity-oriented triangular factorization</td>
<td>268</td>
</tr>
<tr>
<td>6.4.7</td>
<td>Network reduction</td>
<td>268</td>
</tr>
</tbody>
</table>

7 POWER SYSTEM LOADS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Basic load-modelling concepts</td>
<td>271</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Static load models</td>
<td>272</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Dynamic load models</td>
<td>274</td>
</tr>
<tr>
<td>7.2</td>
<td>Modelling of induction motors</td>
<td>279</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Equations of an induction machine</td>
<td>279</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Steady-state characteristics</td>
<td>287</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Alternative rotor constructions</td>
<td>293</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Representation of saturation</td>
<td>296</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Per unit representation</td>
<td>297</td>
</tr>
<tr>
<td>7.2.6</td>
<td>Representation in stability studies</td>
<td>300</td>
</tr>
<tr>
<td>7.3</td>
<td>Synchronous motor model</td>
<td>306</td>
</tr>
<tr>
<td>7.4</td>
<td>Acquisition of load-model parameters</td>
<td>306</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Measurement-based approach</td>
<td>306</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Component-based approach</td>
<td>308</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Sample load characteristics</td>
<td>310</td>
</tr>
</tbody>
</table>

References

271

312
8 EXCITATION SYSTEMS

8.1 Excitation system requirements 315
8.2 Elements of an excitation system 317
8.3 Types of excitation systems 318
 8.3.1 DC excitation systems 319
 8.3.2 AC excitation systems 320
 8.3.3 Static excitation systems 323
 8.3.4 Recent developments and future trends 326
8.4 Dynamic performance measures 327
 8.4.1 Large-signal performance measures 327
 8.4.2 Small-signal performance measures 330
8.5 Control and protective functions 333
 8.5.1 AC and DC regulators 333
 8.5.2 Excitation system stabilizing circuits 334
 8.5.3 Power system stabilizer (PSS) 335
 8.5.4 Load compensation 335
 8.5.5 Underexcitation limiter 337
 8.5.6 Overexcitation limiter 337
 8.5.7 Volts-per-hertz limiter and protection 339
 8.5.8 Field-shorting circuits 340
8.6 Modelling of excitation systems 341
 8.6.1 Per unit system 342
 8.6.2 Modelling of excitation system components 347
 8.6.3 Modelling of complete excitation systems 362
 8.6.4 Field testing for model development and verification 372

References 373

9 PRIME MOVERS AND ENERGY SUPPLY SYSTEMS

9.1 Hydraulic turbines and governing systems 377
 9.1.1 Hydraulic turbine transfer function 379
 9.1.2 Nonlinear turbine model assuming inelastic water column 387
 9.1.3 Governors for hydraulic turbines 394
 9.1.4 Detailed hydraulic system model 404
 9.1.5 Guidelines for modelling hydraulic turbines 417
9.2 Steam turbines and governing systems 418
 9.2.1 Modelling of steam turbines 422
 9.2.2 Steam turbine controls 432
 9.2.3 Steam turbine off-frequency capability 444
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3</td>
<td>Thermal energy systems</td>
<td>449</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Fossil-fuelled energy systems</td>
<td>449</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Nuclear-based energy systems</td>
<td>455</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Modelling of thermal energy systems</td>
<td>459</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>460</td>
</tr>
<tr>
<td>10</td>
<td>HIGH-VOLTAGE DIRECT-CURRENT TRANSMISSION</td>
<td>463</td>
</tr>
<tr>
<td>10.1</td>
<td>HVDC system configurations and components</td>
<td>464</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Classification of HVDC links</td>
<td>464</td>
</tr>
<tr>
<td>10.1.2</td>
<td>Components of HVDC transmission system</td>
<td>467</td>
</tr>
<tr>
<td>10.2</td>
<td>Converter theory and performance equations</td>
<td>468</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Valve characteristics</td>
<td>469</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Converter circuits</td>
<td>470</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Converter transformer rating</td>
<td>492</td>
</tr>
<tr>
<td>10.2.4</td>
<td>Multiple-bridge converters</td>
<td>493</td>
</tr>
<tr>
<td>10.3</td>
<td>Abnormal operation</td>
<td>498</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Arc-back (backfire)</td>
<td>498</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Commutation failure</td>
<td>499</td>
</tr>
<tr>
<td>10.4</td>
<td>Control of HVDC systems</td>
<td>500</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Basic principles of control</td>
<td>500</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Control implementation</td>
<td>514</td>
</tr>
<tr>
<td>10.4.3</td>
<td>Converter firing-control systems</td>
<td>516</td>
</tr>
<tr>
<td>10.4.4</td>
<td>Valve blocking and bypassing</td>
<td>520</td>
</tr>
<tr>
<td>10.4.5</td>
<td>Starting, stopping, and power-flow reversal</td>
<td>521</td>
</tr>
<tr>
<td>10.4.6</td>
<td>Controls for enhancement of ac system performance</td>
<td>523</td>
</tr>
<tr>
<td>10.5</td>
<td>Harmonics and filters</td>
<td>524</td>
</tr>
<tr>
<td>10.5.1</td>
<td>AC side harmonics</td>
<td>524</td>
</tr>
<tr>
<td>10.5.2</td>
<td>DC side harmonics</td>
<td>527</td>
</tr>
<tr>
<td>10.6</td>
<td>Influence of ac system strength on ac/dc system interaction</td>
<td>528</td>
</tr>
<tr>
<td>10.6.1</td>
<td>Short-circuit ratio</td>
<td>528</td>
</tr>
<tr>
<td>10.6.2</td>
<td>Reactive power and ac system strength</td>
<td>529</td>
</tr>
<tr>
<td>10.6.3</td>
<td>Problems with low ESCR systems</td>
<td>530</td>
</tr>
<tr>
<td>10.6.4</td>
<td>Solutions to problems associated with weak systems</td>
<td>531</td>
</tr>
<tr>
<td>10.6.5</td>
<td>Effective inertia constant</td>
<td>532</td>
</tr>
<tr>
<td>10.6.6</td>
<td>Forced commutation</td>
<td>532</td>
</tr>
<tr>
<td>10.7</td>
<td>Responses to dc and ac system faults</td>
<td>533</td>
</tr>
<tr>
<td>10.7.1</td>
<td>DC line faults</td>
<td>534</td>
</tr>
<tr>
<td>10.7.2</td>
<td>Converter faults</td>
<td>535</td>
</tr>
<tr>
<td>10.7.3</td>
<td>AC system faults</td>
<td>535</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.8</td>
<td>Multiterminal HVDC systems</td>
<td>538</td>
</tr>
<tr>
<td>10.8.1</td>
<td>MTDC network configurations</td>
<td>539</td>
</tr>
<tr>
<td>10.8.2</td>
<td>Control of MTDC systems</td>
<td>540</td>
</tr>
<tr>
<td>10.9</td>
<td>Modelling of HVDC systems</td>
<td>544</td>
</tr>
<tr>
<td>10.9.1</td>
<td>Representation for power-flow solution</td>
<td>544</td>
</tr>
<tr>
<td>10.9.2</td>
<td>Per unit system for dc quantities</td>
<td>564</td>
</tr>
<tr>
<td>10.9.3</td>
<td>Representation for stability studies</td>
<td>566</td>
</tr>
</tbody>
</table>

References | 577 |

11 CONTROL OF ACTIVE POWER AND REACTIVE POWER | 581

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Active power and frequency control</td>
<td>581</td>
</tr>
<tr>
<td>11.1.1</td>
<td>Fundamentals of speed governing</td>
<td>582</td>
</tr>
<tr>
<td>11.1.2</td>
<td>Control of generating unit power output</td>
<td>592</td>
</tr>
<tr>
<td>11.1.3</td>
<td>Composite regulating characteristic of power systems</td>
<td>595</td>
</tr>
<tr>
<td>11.1.4</td>
<td>Response rates of turbine-governing systems</td>
<td>598</td>
</tr>
<tr>
<td>11.1.5</td>
<td>Fundamentals of automatic generation control</td>
<td>601</td>
</tr>
<tr>
<td>11.1.6</td>
<td>Implementation of AGC</td>
<td>617</td>
</tr>
<tr>
<td>11.1.7</td>
<td>Underfrequency load shedding</td>
<td>623</td>
</tr>
<tr>
<td>11.2</td>
<td>Reactive power and voltage control</td>
<td>627</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Production and absorption of reactive power</td>
<td>627</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Methods of voltage control</td>
<td>628</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Shunt reactors</td>
<td>629</td>
</tr>
<tr>
<td>11.2.4</td>
<td>Shunt capacitors</td>
<td>631</td>
</tr>
<tr>
<td>11.2.5</td>
<td>Series capacitors</td>
<td>633</td>
</tr>
<tr>
<td>11.2.6</td>
<td>Synchronous condensers</td>
<td>638</td>
</tr>
<tr>
<td>11.2.7</td>
<td>Static var systems</td>
<td>639</td>
</tr>
<tr>
<td>11.2.8</td>
<td>Principles of transmission system compensation</td>
<td>654</td>
</tr>
<tr>
<td>11.2.9</td>
<td>Modelling of reactive compensating devices</td>
<td>672</td>
</tr>
<tr>
<td>11.2.10</td>
<td>Application of tap-changing transformers to transmission systems</td>
<td>678</td>
</tr>
<tr>
<td>11.2.11</td>
<td>Distribution system voltage regulation</td>
<td>679</td>
</tr>
<tr>
<td>11.2.12</td>
<td>Modelling of transformer ULTC control systems</td>
<td>684</td>
</tr>
<tr>
<td>11.3</td>
<td>Power-flow analysis procedures</td>
<td>687</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Prefault power flows</td>
<td>687</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Postfault power flows</td>
<td>688</td>
</tr>
</tbody>
</table>

References | 691 |
PART III SYSTEM STABILITY: physical aspects, analysis, and improvement

12 SMALL-SIGNAL STABILITY 699

12.1 Fundamental concepts of stability of dynamic systems 700
 12.1.1 State-space representation 700
 12.1.2 Stability of a dynamic system 702
 12.1.3 Linearization 703
 12.1.4 Analysis of stability 706

12.2 Eigenproperties of the state matrix 707
 12.2.1 Eigenvalues 707
 12.2.2 Eigenvectors 707
 12.2.3 Modal matrices 708
 12.2.4 Free motion of a dynamic system 709
 12.2.5 Mode shape, sensitivity, and participation factor 714
 12.2.6 Controllability and observability 716
 12.2.7 The concept of complex frequency 717
 12.2.8 Relationship between eigenproperties and transfer functions 719
 12.2.9 Computation of eigenvalues 726

12.3 Small-signal stability of a single-machine infinite bus system 727
 12.3.1 Generator represented by the classical model 728
 12.3.2 Effects of synchronous machine field circuit dynamics 737

12.4 Effects of excitation system 758

12.5 Power system stabilizer 766

12.6 System state matrix with amortisseurs 782

12.7 Small-signal stability of multimachine systems 792

12.8 Special techniques for analysis of very large systems 799

12.9 Characteristics of small-signal stability problems 817

References 822

13 TRANSIENT STABILITY 827

13.1 An elementary view of transient stability 827

13.2 Numerical integration methods 836
 13.2.1 Euler method 836
 13.2.2 Modified Euler method 838
 13.2.3 Runge-Kutta (R-K) methods 838
 13.2.4 Numerical stability of explicit integration methods 841
 13.2.5 Implicit integration methods 842
13.3 Simulation of power system dynamic response
 13.3.1 Structure of the power system model 848
 13.3.2 Synchronous machine representation 849
 13.3.3 Excitation system representation 855
 13.3.4 Transmission network and load representation 858
 13.3.5 Overall system equations 859
 13.3.6 Solution of overall system equations 861

13.4 Analysis of unbalanced faults
 13.4.1 Introduction to symmetrical components 872
 13.4.2 Sequence impedances of synchronous machines 877
 13.4.3 Sequence impedances of transmission lines 884
 13.4.4 Sequence impedances of transformers 884
 13.4.5 Simulation of different types of faults 885
 13.4.6 Representation of open-conductor conditions 898

13.5 Performance of protective relaying
 13.5.1 Transmission line protection 903
 13.5.2 Fault-clearing times 911
 13.5.3 Relaying quantities during swings 914
 13.5.4 Evaluation of distance relay performance during swings 919
 13.5.5 Prevention of tripping during transient conditions 920
 13.5.6 Automatic line reclosing 922
 13.5.7 Generator out-of-step protection 923
 13.5.8 Loss-of-excitation protection 927

13.6 Case study of transient stability of a large system 934

13.7 Direct method of transient stability analysis
 13.7.1 Description of the transient energy function approach 941
 13.7.2 Analysis of practical power systems 945
 13.7.3 Limitations of the direct methods 954

References 954

14 VOLTAGE STABILITY 959

14.1 Basic concepts related to voltage stability 960
 14.1.1 Transmission system characteristics 960
 14.1.2 Generator characteristics 967
 14.1.3 Load characteristics 968
 14.1.4 Characteristics of reactive compensating devices 969

14.2 Voltage collapse
 14.2.1 Typical scenario of voltage collapse 974
 14.2.2 General characterization based on actual incidents 975
14.2.3 Classification of voltage stability
14.3 Voltage stability analysis
14.3.1 Modelling requirements
14.3.2 Dynamic analysis
14.3.3 Static analysis
14.3.4 Determination of shortest distance to instability
14.3.5 The continuation power-flow analysis
14.4 Prevention of voltage collapse
14.4.1 System design measures
14.4.2 System-operating measures

References

15 SUBSYNCHRONOUS OSCILLATIONS

15.1 Turbine-generator torsional characteristics
15.1.1 Shaft system model
15.1.2 Torsional natural frequencies and mode shapes
15.2 Torsional interaction with power system controls
15.2.1 Interaction with generator excitation controls
15.2.2 Interaction with speed governors
15.2.3 Interaction with nearby dc converters
15.3 Subsynchronous resonance
15.3.1 Characteristics of series capacitor-compensated transmission systems
15.3.2 Self-excitation due to induction generator effect
15.3.3 Torsional interaction resulting in SSR
15.3.4 Analytical methods
15.3.5 Countermeasures to SSR problems
15.4 Impact of network-switching disturbances
15.5 Torsional interaction between closely coupled units
15.6 Hydro generator torsional characteristics

References

16 MID-TERM AND LONG-TERM STABILITY

16.1 Nature of system response to severe upsets
16.2 Distinction between mid-term and long-term stability
16.3 Power plant response during severe upsets
16.3.1 Thermal power plants
16.3.2 Hydro power plants

References
17 METHODS OF IMPROVING STABILITY

17.1 Transient stability enhancement
 17.1.1 High-speed fault clearing
 17.1.2 Reduction of transmission system reactance
 17.1.3 Regulated shunt compensation
 17.1.4 Dynamic braking
 17.1.5 Reactor switching
 17.1.6 Independent-pole operation of circuit breakers
 17.1.7 Single-pole switching
 17.1.8 Steam turbine fast-valving
 17.1.9 Generator tripping
 17.1.10 Controlled system separation and load shedding
 17.1.11 High-speed excitation systems
 17.1.12 Discontinuous excitation control
 17.1.13 Control of HVDC transmission links

17.2 Small-signal stability enhancement
 17.2.1 Power system stabilizers
 17.2.2 Supplementary control of static var compensators
 17.2.3 Supplementary control of HVDC transmission links

References