Modern Mathematical Methods of Optimization

edited by Karl-Heinz Elster

Akademie Verlag
Contents

Introduction 15

1 Modern numerical methods and software in optimization 23
 1.1 The linearization method in constrained optimization 23
 1.1.1 Introduction 23
 1.1.2 The essence of the method, its formulation and convergence conditions 24
 1.1.3 Exact penalty functions 27
 1.1.4 Selection of N and constructivity of convergence conditions 29
 1.1.5 Local analysis 33
 1.1.6 A linearization method with accelerated convergence 37
 1.1.7 Some questions of implementation 39
 1.2 Superlinearly convergent methods of nonlinear programming 43
 1.2.1 Introduction 43
 1.2.2 Local theory 43
 1.2.3 Global theory 47
 1.3 Optimization problems in the presence of noise 53
 1.3.1 Sources and types of noise 53
 1.3.2 Behaviour of standard methods in the presence of noise 54
 1.3.3 Convergence of methods under random noise 55
 1.3.4 Optimal methods 56
 1.3.5 Generalizations 57
 1.3.6 Implementable algorithms 59
 1.3.7 Constrained minimization 60
2 Optimal methods of convex programming and polynomial methods of linear programming

2.1 Local methods of convex programming. Optimal methods
2.1.1 Local methods
2.1.2 Complexity of convex problems
2.1.3 Cutting plane methods
2.1.4 Method of centres
2.1.5 Method of circumscribed ellipsoids
2.1.6 Method of inscribed ellipsoids
2.1.7 Constrained problems

2.2 Polynomial algorithms in linear programming
2.2.1 Algebraic statement of the problem
2.2.2 Bit posing. Method of ellipsoids
2.2.3 Karmarkar's method
2.2.4 The projection method
2.2.5 The methods of Renegar and Vaidya
2.2.6 Dual algorithms

2.3 Optimal methods for the solution of large-scale convex programming problems
2.3.1 Smooth spaces
2.3.2 General convex problems
2.3.3 Smooth convex problems
2.3.4 Problems with regular minimum

3 Decomposition of optimization problems
3.1 Decomposition approach in optimization
3.1.1 Typical approaches
5.2.1 Realization of duality for improper linear programming problems 181
5.2.2 Duality for improper convex programming problems of the first kind .. 187
5.2.3 On duality of improper problems in infinite-dimensional spaces 188
5.3 Infinite-dimensional linear programming problems with a duality gap. 191
5.3.1 Approximation of an infinite-dimensional LP problem by cones 191
5.3.2 Infinite linear programming problems over R_∞ 193
5.4 Correction of systems of linear equations and inequalities using additional information .. 195
5.5 Correction of improper minimax problems 198
5.5.1 Solvability sets ... 198
5.5.2 Correction according to a convex criterion 199
5.5.3 Correction with respect to a concave-convex criterion 201
5.6 Regularization of improper linear problems 203
5.7 Correction of improper convex programming problems by means of augmented Lagrangians 206
5.7.1 Correction on the basis of a modification of the Lagrangian with respect to dual variables 206
5.7.2 Correction on the basis of a symmetric modification of the Lagrangian .. 209
References ... 211

6 Optimization in order scales ... 212
6.1 Introduction ... 212
6.2 Conceptions and mechanisms of choice .. 213
6.3 Choice functions .. 214
6.3.1 Choice and choice function ... 214
6.3.2 Partial and complete choice functions .. 214
6.3.3 Characteristic features of a choice function 215
6.4 Binary relations .. 216
6.4.1 Measurement of the quality of a solution 216
6.4.2 Classes of binary relations ... 217
6.4.3 Indicators ... 219
6.5 Binary relations and choice functions .. 220
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5.1</td>
<td>Classes of choice functions</td>
<td>220</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Characterizing properties of certain choice functions</td>
<td>222</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Decomposition of choice functions</td>
<td>223</td>
</tr>
<tr>
<td>6.6</td>
<td>Optimization with respect to a binary relation</td>
<td>224</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Optimal elements</td>
<td>224</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Comparison of variants</td>
<td>225</td>
</tr>
<tr>
<td>6.6.3</td>
<td>Correcting choice functions</td>
<td>227</td>
</tr>
<tr>
<td>6.7</td>
<td>Generalized mathematical programming</td>
<td>227</td>
</tr>
<tr>
<td>6.7.1</td>
<td>The development of models</td>
<td>227</td>
</tr>
<tr>
<td>6.7.2</td>
<td>Mathematical programming in order scales</td>
<td>228</td>
</tr>
<tr>
<td>6.7.3</td>
<td>Solution methods</td>
<td>229</td>
</tr>
<tr>
<td>6.7.4</td>
<td>Concluding remarks</td>
<td>231</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>231</td>
</tr>
</tbody>
</table>

7 Multiobjective optimization

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Duality in multiobjective optimization</td>
<td>233</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Strong and weak duality</td>
<td>234</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Construction of dual problems</td>
<td>235</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Duality for multiobjective location problems</td>
<td>239</td>
</tr>
<tr>
<td>7.1.4</td>
<td>Duality in integer multiobjective programming</td>
<td>240</td>
</tr>
<tr>
<td>7.2</td>
<td>Duality of choice in vector optimization problems</td>
<td>242</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Primal and dual choice functions</td>
<td>242</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Dualization of preferences and alternatives</td>
<td>243</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Duality and Pareto optimality</td>
<td>244</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Pareto optima and polar correspondences</td>
<td>246</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Dual generalized criteria</td>
<td>248</td>
</tr>
<tr>
<td>7.2.6</td>
<td>An application</td>
<td>250</td>
</tr>
<tr>
<td>7.2.7</td>
<td>Duality for asymmetric budget sets</td>
<td>251</td>
</tr>
<tr>
<td>7.3</td>
<td>Multicriteria optimization problems involving importance-ordered criteria</td>
<td>254</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Basic definitions</td>
<td>254</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Main kinds of importance</td>
<td>257</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Problems involving homogeneous importance-ordered criteria</td>
<td>260</td>
</tr>
</tbody>
</table>
7.3.4 Convex problems with homogeneous criteria ordered with respect to importance .. 262
7.3.5 Multicriteria problems with inhomogeneous criteria ordered with respect to importance 264

7.4 Efficiency estimation of decision rules in discrete multiobjective problems 267
7.4.1 Construction of solutions ... 268
7.4.2 Efficiency indicators of decision rules in multicriteria problems ... 270
7.4.3 Efficiency estimates for twocriterial problems ... 273
7.4.4 Some efficiency estimates for the general case ... 275

7.5 On the dialogue procedures of decision making in practical multicriteria models of economy 277
7.5.1 Statement of the problem and optimization procedures ... 277
7.5.2 An example of applying the dialogue systems described .. 279
7.5.3 A program package of multicriteria optimization .. 280
7.5.4 A method of interactive multicriteria optimization .. 281

References ... 282

8 Discrete optimization ... 288
8.1 Mathematical models and some applied problems ... 288
8.1.1 The general problem of ILP .. 289
8.1.2 The multidimensional knapsack problem ... 289
8.1.3 The onedimensional knapsack problem .. 290
8.1.4 The problems of packing, partitioning and covering a set ... 290
8.1.5 The travelling salesman problem .. 291
8.1.6 The fixed-charge problem ... 292
8.1.7 Consideration of problem specifics .. 293
8.1.8 The quadratic assignment problem .. 294
8.1.9 Problems of projecting mining enterprises ... 295
8.1.10 Selection of optimal technologies .. 295
8.1.11 Other models and applications .. 296

8.2 Methods of discrete optimization. Complexity of discrete problems ... 297
8.2.1 General survey ... 297
8.2.2 Behaviour of methods ... 298
8.2.3 Elements of complexity theory .. 299
8.2.4 Complexity of discrete optimization problems 301
8.2.5 A way out of the situation .. 302
8.3 Effective approximation methods of discrete optimization 304
 8.3.1 Polynomial approximation schemes 304
 8.3.2 Polynomial approximately feasible algorithms 308
8.4 The knapsack problem and its extensions 310
 8.4.1 The knapsack problem .. 310
 8.4.2 The multiple-choice knapsack problem 313
 8.4.3 The multistep knapsack problem 315
 8.4.4 Linear generalizations ... 316
 8.4.5 Nonlinear generalizations ... 316
 8.4.6 A special problem ... 318
8.5 Dual approach in integer programming 318
 8.5.1 Duality in ILP .. 318
 8.5.2 Generalized labelling methods ... 323
References .. 326

9 Some problems of mathematical programming in infinite-dimensional
spaces ... 337
9.1 Duality assertions and optimality conditions of general fractional opti-
 mization problems ... 337
 9.1.1 Introduction ... 337
 9.1.2 Conjugate functions ... 338
 9.1.3 Duality assertions and optimality conditions 340
 9.1.4 Comparison of conjugation concepts 345
9.2 Optimal control and duality in control problems 347
 9.2.1 Fundamental problems of optimal control 347
 9.2.2 Variational problems ... 349
 9.2.3 Pontryagin's maximum principle 350
 9.2.4 Dual problems for optimal control problems 351
9.3 Numerical analysis and solution methods for semi-infinite programming
problems ... 353
9.3.1 Introduction .. 353
9.3.2 Theoretical background of numerical methods 355
9.3.3 Numerical methods for semi-infinite problems 359

9.4 Proximity-space methods in optimization with constraints 362
9.4.1 Introduction .. 362
9.4.2 Topological background 363
9.4.3 Optimization problems treated with tolerance 365
9.4.4 Compactification of optimization problems 368

References ... 369

10 Optimization and mathematical economics 375
10.1 Price regulation in the presence of queues and quantity rationing 375
10.1.1 Demand and fixed price equilibrium in the presence of queues 376
10.1.2 Demand and fixed price equilibrium under quantity rationing 379
10.1.3 Price regulation ... 381
10.1.4 Concluding remarks .. 383

10.2 Processes of finding equilibrated states 383
10.2.1 Equilibrated states .. 384
10.2.2 First method of searching equilibrated states: movement in the space of weighted coefficients 388
10.2.3 Second approach to finding equilibrated states: movement in the original space 390

10.3 Local estimates and the selection problem 395
10.3.1 Selection functions .. 396
10.3.2 The problem of multicriteria optimization 397
10.3.3 Regularization of contradictory requirements 398
10.3.4 The problem of quasilinear programming 400

10.4 Computation of equilibria for a class of piecewise linear models by a sequence of linear programs 401

References ... 407

Index .. 411