HANDBUCH DER PHYSIK

HERAUSGEGEBEN VON
S. FLÜGGE

BAND VIa/2
FESTKÖRPERMECHANIK II

BANDHERAUSGEBER
C. TRUESDELL

MIT 25 FIGUREN

SPRINGER-VERLAG
BERLIN - HEIDELBERG - NEW YORK
1972
The Linear Theory of Elasticity. By Morton E. Gurtin, Professor of Mathematics, Carnegie-Mellon University, Pittsburgh, Pennsylvania (USA). (With 18 Figures)

A. Introduction
1. Background. Nature of this treatise
2. Terminology and general scheme of notation

B. Mathematical preliminaries
I. Tensor analysis
II. Elements of potential theory
5. The body B. The subsurfaces S_1 and S_2 of δB
6. The divergence theorem. Stokes' theorem
7. The fundamental lemma. Rellich's lemma
8. Harmonic and biharmonic fields
III. Functions of position and time
9. Class $C^{M,N}$
10. Convolutions
11. Space-time

C. Formulation of the linear theory of elasticity
I. Kinematics
12. Finite deformations. Infinitesimal deformations
13. Properties of displacement fields. Strain
14. Compatibility
II. Balance of momentum. The equations of motion and equilibrium
15. Balance of momentum. Stress
16. Balance of momentum for finite motions
17. General solutions of the equations of equilibrium
18. Consequences of the equation of equilibrium
19. Consequences of the equation of motion
III. The constitutive relation for linearly elastic materials
20. The elasticity tensor
21. Material symmetry
22. Isotropic materials
23. The constitutive assumption for finite elasticity
24. Work theorems. Stored energy
25. Strong ellipticity
26. Anisotropic materials

D. Elastostatics
I. The fundamental field equations. Elastic states. Work and energy
27. The fundamental system of field equations
28. Elastic states. Work and energy
II. The reciprocal theorem. Mean strain theorems
29. Mean strain and mean stress theorems. Volume change
30. The reciprocal theorem
Contents

III. Boundary-value problems. Uniqueness
- 31. The boundary-value problems of elastostatics 102
- 32. Uniqueness 104
- 33. Nonexistence 109

IV. The variational principles of elastostatics
- 34. Minimum principles 110
- 35. Some extensions of the fundamental lemma 115
- 36. Converse to the minimum principles 116
- 37. Maximum principles 120
- 38. Variational principles 122
- 39. Convergence of approximate solutions 125

V. The general boundary-value problem. The contact problem
- 40. Statement of the problem. Uniqueness 129
- 41. Extension of the minimum principles 130

VI. Homogeneous and isotropic bodies
- 42. Properties of elastic displacement fields 131
- 43. The mean value theorem 133
- 44. Complete solutions of the displacement equation of equilibrium 138

VII. The plane problem
- 45. The associated plane strain and generalized plane stress solutions 150
- 46. Plane elastic states 154
- 47. Airy's solution 156

VIII. Exterior domains
- 48. Representation of elastic displacement fields in a neighborhood of infinity 165
- 49. Behavior of elastic states at infinity 167
- 50. Extension of the basic theorems in elastostatics to exterior domains 169

IX. Basic singular solutions. Concentrated loads. Green's functions
- 51. Basic singular solutions 173
- 52. Concentrated loads. The reciprocal theorem 179
- 53. Integral representation of solutions to concentrated-load problems 185

X. Saint-Venant's principle
- 54. The v. Mises-Sternberg version of Saint-Venant's principle 190
- 55. Toupin's version of Saint-Venant's principle 196
- 56. Knowles' version of Saint-Venant's principle 200
- 56a. The Zanaboni-Robinson version of Saint-Venant's principle 206

XI. Miscellaneous results
- 57. Some further results for homogeneous and isotropic bodies 207
- 58. Incompressible materials 210

E. Elastodynamics
 - Reciprocity 212
- 59. The fundamental system of field equations 212
- 60. Elastic processes. Power and energy 215
- 61. Graffi's reciprocal theorem 218

II. Boundary-initial-value problems. Uniqueness
- 62. The boundary-initial-value problem of elastodynamics 219
- 63. Uniqueness 222

III. Variational principles
- 64. Some further extensions of the fundamental lemma 223
- 65. Variational principles 225
- 66. Minimum principles 230

IV. Homogeneous and isotropic bodies
- 67. Complete solutions of the field equations 232
- 68. Basic singular solutions 239
- 69. Love's integral identity 242
V. Wave propagation

70. The acoustic tensor
71. Progressive waves
72. Propagating surfaces. Surfaces of discontinuity
73. Shock waves. Acceleration waves. Mild discontinuities
74. Domain of influence. Uniqueness for infinite regions

VI. The free vibration problem

75. Basic equations
76. Characteristic solutions. Minimum principles
77. The minimax principle and its consequences
78. Completeness of the characteristic solutions

References

Linear Thermoelasticity. By Professor DONALD E. CARLSON, Department of Theoretical and Applied Mechanics, University of Illinois, Urbana, Illinois (USA)

A. Introduction

1. The nature of this article
2. Notation

B. The foundations of the linear theory of thermoelasticity

3. The basic laws of mechanics and thermodynamics
4. Elastic materials. Consequences of the second law
5. The principle of material frame-indifference
6. Consequences of the heat conduction inequality
7. Derivation of the linear theory
8. Isotropy

C. Equilibrium theory

9. Basic equations. Thermoelastic states
10. Mean strain and mean stress. Volume change
11. The body force analogy
12. Special results for homogeneous and isotropic bodies
13. The theorem of work and energy. The reciprocal theorem
14. The boundary-value problems of the equilibrium theory. Uniqueness
15. Temperature fields that induce displacement free and stress free states
16. Minimum principles
17. The uncoupled-quasi-static theory

D. Dynamic theory

18. Basic equations. Thermoelastic processes
19. Special results for homogeneous and isotropic bodies
20. Complete solutions of the field equations
21. The theorem of power and energy. The reciprocal theorem
22. The boundary-initial-value problems of the dynamic theory
23. Uniqueness
24. Variational principles
25. Progressive waves

List of works cited

Existence Theorems in Elasticity. By Professor GAETANO FICHERA, University of Rome, Rome (Italy)

1. Prerequisites and notations
2. The function spaces H^m_m and H^m_m
3. Elliptic linear systems. Interior regularity
4. Results preparatory to the regularization at the boundary
5. Strongly elliptic systems
6. General existence theorems
7. Propagation problems
8. Diffusion problems
9. Integro-differential equations
10. Classical boundary value problems for a scalar 2nd order elliptic operator
11. Equilibrium of a thin plate
12. Boundary value problems of equilibrium in linear elasticity 380
13. Equilibrium problems for heterogeneous media 386
Bibliography 388

Boundary Value Problems of Elasticity with Unilateral Constraints. By Professor
GAETANO FICHERA, University of Rome, Rome (Italy) 391
1. Abstract unilateral problems: the symmetric case 391
2. Abstract unilateral problems: the nonsymmetric case 395
3. Unilateral problems for elliptic operators 399
4. General definition for the convex set V 401
5. Unilateral problems for an elastic body 402
6. Other examples of unilateral problems 404
7. Existence theorem for the generalized Signorini problem 407
8. Regularization theorem: interior regularity 408
9. Regularization theorem: regularity near the boundary 411
10. Analysis of the Signorini problem 413
11. Historical and bibliographical remarks concerning Existence Theorems in
Elasticity 418
Bibliography 423

The Theory of Shells and Plates. By P. M. NAGHDI, Professor of Engineering Science,
University of California, Berkeley, California (USA). (With 2 Figures) 425
A. Introduction 425
1. Preliminary remarks 425
2. Scope and contents 429
3. Notation and a list of symbols used 431
B. Kinematics of shells and plates 438
5. Kinematics of shells: I. Direct approach 449
α) General kinematical results 449
β) Superposed rigid body motions 452
γ) Additional kinematics 455
δ) Linearized kinematics 456
ϵ) A catalogue of linear kinematic measures 458
ζ) Additional linear kinematic formulae 461
η) Compatibility equations 463
7. Kinematics of shells: II. Developments from the three-dimensional theory 466
α) General kinematical results 466
β) Some results valid in a reference configuration 471
γ) Linearized kinematics 473
δ) Approximate linearized kinematic measures 476
ϵ) Other kinematic approximations in the linear theory 477
C. Basic principles for shells and plates 479
8. Basic principles for shells: I. Direct approach 479
α) Conservation laws 479
β) Entropy production 483
γ) Invariance conditions 484
δ) An alternative statement of the conservation laws 487
ϵ) Conservation laws in terms of field quantities in a reference state 490
9. Derivation of the basic field equations for shells: I. Direct approach 492
α) General field equations in vector forms 492
β) Alternative forms of the field equations 498
γ) Linearized field equations 500
δ) The basic field equations in terms of a reference state 502
10. Derivation of the basic field equations of a restricted theory: I. Direct approach 503
11. Basic field equations for shells: II. Derivation from the three-dimensional
theory 508
α) Some preliminary results 508
β) Stress-resultants, stress-couples and other resultants for shells 512
γ) Developments from the energy equation. Entropy inequalities 515
Contents.

12. Basic field equations for shells continued: II. Derivation from the three-dimensional theory ... 519
 6) General field equations .. 519
 e) An approximate system of equations of motion 522
 ζ) Linearized field equations .. 523
 η) Relationship with results in the classical linear theory of thin shells and plates .. 524

12A. Appendix on the history of derivations of the equations of equilibrium for shells .. 527

D. Elastic shells ... 528

13. Constitutive equations for elastic shells (nonlinear theory): I. Direct approach .. 528
 α) General considerations. Thermodynamical results 529
 β) Reduction of the constitutive equations under superposed rigid body motions ... 534
 γ) Material symmetry restrictions ... 537
 δ) Alternative forms of the constitutive equations 540

14. The complete theory. Special results: I. Direct approach 544
 α) The boundary-value problem in the general theory 544
 β) Constitutive equations in a mechanical theory 544
 γ) Some special results .. 546
 δ) Special theories ... 546

15. The complete restricted theory: I. Direct approach 549

16. Linear constitutive equations: I. Direct approach 553
 α) General considerations .. 553
 β) Explicit results for linear constitutive equations 555
 γ) A restricted form of the constitutive equations for an isotropic material .. 557
 δ) Constitutive equations of the restricted linear theory 560

17. The complete theory for thermoelastic shells: II. Derivation from the three-dimensional theory .. 561
 α) Constitutive equations in terms of two-dimensional variables. Thermodynamical results .. 561
 β) Summary of the basic equations in a complete theory 565

18. Approximation for thin shells: II. Developments from the three-dimensional theory .. 566
 α) An approximation procedure .. 566
 β) Approximation in the linear theory .. 568

19. An alternative approximation procedure in the linear theory: II. Developments from the three-dimensional theory 569

20. Explicit constitutive equations for approximate linear theories of plates and shells: II. Developments from the three-dimensional theory .. 572
 α) Approximate constitutive equations for plates 572
 β) The classical plate theory. Additional remarks 575
 γ) Approximate constitutive relations for thin shells 578
 δ) Classical shell theory. Additional remarks 580

21. Further remarks on the approximate linear and nonlinear theories developed from the three-dimensional equations 585

21A. Appendix on the history of the derivation of linear constitutive equations for thin elastic shells ... 589

22. Relationship of results from the three-dimensional theory and the theory of Cosserat surface ... 594

E. Linear theory of elastic plates and shells 595

23. The boundary-value problem in the linear theory 596
 α) Elastic plates ... 596
 β) Elastic shells ... 597

24. Determination of the constitutive coefficients 598
 α) The constitutive coefficients for plates 598
 β) The constitutive coefficients for shells 606

25. The boundary-value problem of the restricted linear theory 607

26. A uniqueness theorem. Remarks on the general theorems 610

I b Handbuch der Physik, Bd. VIa/2.
Contents

F. Appendix: Geometry of a surface and related results

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometry of Euclidean space</td>
<td>615</td>
</tr>
<tr>
<td>Some results from the differential geometry of a surface</td>
<td>621</td>
</tr>
<tr>
<td>- Definition of a surface. Preliminaries</td>
<td>621</td>
</tr>
<tr>
<td>- First and second fundamental forms</td>
<td>623</td>
</tr>
<tr>
<td>- Covariant derivatives. The curvature tensor</td>
<td>624</td>
</tr>
<tr>
<td>- Formulae of Weingarten and Gauss. Integrability conditions</td>
<td>625</td>
</tr>
<tr>
<td>- Principal curvatures. Lines of curvature</td>
<td>627</td>
</tr>
<tr>
<td>Geometry of a surface in a Euclidean space covered by normal coordinates</td>
<td>628</td>
</tr>
<tr>
<td>Physical components of surface tensors in lines of curvature coordinates</td>
<td>631</td>
</tr>
</tbody>
</table>

References

264 pages

The Theory of Rods

By Professor Stuart S. Antman, New York University, New York (USA). (With 5 Figures)

A. Introduction

- 1. Definition and purpose of rod theories. Nature of this article 641
- 2. Notation 642
- 3. Background 643

B. Formation of rod theories

- I. Approximation of three-dimensional equations 646
- 4. Nature of the approximation process 646
- 5. Representation of position and logarithmic temperature 647
- 6. Moments of the fundamental equations 649
- 7. Approximation of the fundamental equations 652
- 8. Constitutive relations 654
- 9. Thermo-elastic rods 656
- 10. Statement of the boundary value problems 658
- 11. Validity of the projection methods 660
- 12. History of the use of projection methods for the construction of rod theories 663
- 13. Asymptotic methods 664

II. Director theories of rods

- 14. Definition of a Cosserat rod 665
- 15. Field equations 666
- 16. Constitutive equations 669

III. Planar problems

- 17. The governing equations 670
- 18. Boundary conditions 674

C. Problems for nonlinearly elastic rods

- 19. Existence 676
- 20. Variational formulation of the equilibrium problems 676
- 21. Statement of theorems 680
- 22. Proofs of the theorems 682
- 23. Straight and circular rods 690
- 24. Uniqueness theorems 692
- 25. Buckled states 694
- 26. Integrals of the equilibrium equations. Qualitative behavior of solutions 696
- 27. Problems of design 698
- 28. Dynamical problems 699

References

700 pages

Namenverzeichnis. — Author Index

705 pages

Sachverzeichnis (Deutsch-Englisch)

711 pages

Subject Index (English-German)

729 pages