PHYSICAL PROPERTIES OF CRYSTALS

THEIR REPRESENTATION BY TENSORS AND MATRICES

By

J. F. NYE, F.R.S.

CLARENDON PRESS • OXFORD
7. Pyroelectricity 78
8. Ferroelectricity 80
Summary of §§ 7, 8 81

V. THE STRESS TENSOR
1. The notion of stress 82
2. Proof that the σ_{ij} form a tensor 87
3. The stress quadric 89
4. Special forms of the stress tensor 90
5. Difference between the stress tensor and tensors representing crystal properties 91
Summary 92

VI. THE STRAIN TENSOR AND THERMAL EXPANSION
1. One-dimensional strain 93
2. Two-dimensional strain 94
3. Three-dimensional strain 98
4. Strain and crystal symmetry 104
Summary of §§ 1–4 105
5. Thermal expansion 106
Summary of § 5 109

VII. PIEZOELECTRICITY. THIRD-RANK TENSORS
1. The direct piezoelectric effect 110
2. Reduction in the number of independent moduli. Matrix notation 113
3. The converse piezoelectric effect 115
4. Reduction in the number of independent moduli by crystal symmetry 116
5. Results for all the crystal classes 122
6. Representation surfaces 126
Summary 128

VIII. ELASTICITY. FOURTH-RANK TENSORS
1. Hooke's law 131
2. The matrix notation 134
3. The energy of a strained crystal 136
4. The effect of crystal symmetry 137
5. Representation surfaces and Young's Modulus 143
6. Volume and linear compressibility of a crystal 145
7. Relations between the compliances and the stiffnesses 147
8. Numerical values of the elastic coefficients 147
Summary 148
IX. THE MATRIX METHOD
1. The matrix and tensor notations 150
2. Matrix algebra 150
3. Crystal properties in matrix notation 153
4. Two derived matrices 155
5. The magnitude of a second-rank tensor property in an arbitrary direction 157
6. Rotation of axes 157
7. Examples of matrix calculations 158
Summary 168

X. THERMODYNAMICS OF EQUILIBRIUM PROPERTIES OF CRYSTALS
1. The thermal, electrical and mechanical properties of a crystal 170
2. Thermodynamics of thermoelastic behaviour 173
3. Thermodynamics of thermal, electrical and elastic properties 178
4. Relations between coefficients measured under different conditions 183
Summary 191

PART 3. TRANSPORT PROPERTIES

XI. THERMAL AND ELECTRICAL CONDUCTIVITY
1. The thermal conductivity and resistivity tensors 195
2. Two special cases of steady heat flow 197
3. Steady-state heat flow in general 200
4. Electrical conductivity 204
5. The reciprocal relation $k_{ij} = k_{ji}$ 205
6. Thermodynamical arguments. Onsager’s Principle 207
Summary 212

XII. THERMOELECTRICITY
1. Thermoelectric effects in isotropic conductors 215
2. Thermoelectric effects in isotropic continuous media 218
3. Thermoelectric effects in crystals 224
Summary 230

PART 4. CRYSTAL OPTICS

XIII. NATURAL AND ARTIFICIAL DOUBLE REFRACTION. SECOND-ORDER EFFECTS
1. Double refraction 235
2. The electro-optical and photoelastic effects 241
3. Second-order effects in general 254
Summary 258
XIV. OPTICAL ACTIVITY

1. Introduction 260
2. Optical activity and birefringence 263
3. The principle of superposition 266
4. The size of the effect 268
5. The tensor character of \([g_{ij}]\) 269
6. The effect of crystal symmetry on the \(g_{ij}\) 270

Summary 273

APPENDIXES

A. Summary of vector notation and formulae 275
B. The symmetry of crystals and conventions for the choice of axes 276
C. Summary of crystal properties 289
D. The number of independent coefficients in the 32 crystal classes 293
E. Matrices for equilibrium properties in the 32 crystal classes 295
F. Magnetic and electrical energy 302
G. The difference between the clamped and free isothermal permittivities 304
H. Proof of the indicatrix properties from Maxwell's equations 305

BIBLIOGRAPHY 310

SUPPLEMENTARY REFERENCES AND NOTES (1985) 313

SOLUTIONS TO THE EXERCISES WITH NOTES 320

INDEX OF NAMES 323

INDEX OF SUBJECTS 324

NOTE

Fig. 13.7 is reproduced, by permission, from Hartshorne and Stuart's Crystals and the polarising microscope (Edward Arnold (Publishers) Ltd.).