Images in weather forecasting
A practical guide for interpreting satellite and radar imagery

Edited by
M. J. Bader, Meteorological Office, UK
G. S. Forbes, Pennsylvania State University, USA
J. R. Grant, Meteorological Office, UK
R. B. E. Lilley, Meteorological Office, UK
A. J. Waters, Meteorological Office, UK

Foreword by
K. A. Browning, Joint Centre for Mesoscale Meteorology, University of Reading, UK
Contents

List of contributors xiv
Foreword xvii
Editorial xix
Acknowledgements xxi
Synopses of chapters: R. K. Anderson xxii

Introduction: The use of imagery in forecasting 1

Lead authors: A. Woodroffe, P. G. Wickham
1 Overview 1
2 Subjective weather analysis 1
 2.1 Synoptic-scale analysis
 2.2 Mesoscale analysis
3 Numerical model analyses 1
 3.1 The role of human intervention
 3.2 Mesoscale model data assimilation
4 Imagery and weather 4
 4.1 Satellite imagery
 4.2 Radar imagery
5 Imagery in the forecasting process 5
 5.1 Use of animation
 5.2 Interactive nowcasting systems
 5.3 Monitoring the performance of a numerical forecast

1 Satellite imagery 7

1.1 Basic principles 7

Lead authors: R. Brown, P. G. Wickham
 1.1.1 Fundamental ideas in satellite remote sensing
 1.1.1.1 Physical principles
 1.1.1.2 Satellite imagery
 1.1.2 Types of meteorological satellite
 1.1.2.1 Polar-orbiting satellites
 1.1.2.2 Geostationary satellites
 1.1.3 Satellite characteristics
 1.1.4 Dissemination of satellite imagery
 1.1.4.1 Digital and analogue transmissions

1.1.5 Basic interpretation of VIS imagery
 1.1.5.1 General principles
 1.1.5.2 Problem areas in interpreting VIS imagery
 (a) Distinguishing clouds from snow-covered ground
 (b) Small clouds
 (c) Thin clouds
 1.1.6 Basic interpretation of IR imagery
 1.1.6.1 General principles
 1.1.6.2 Problem areas in interpreting IR imagery
 1.1.7 Basic interpretation of WV imagery
 1.1.7.1 Principles of operation
 1.1.7.2 Interpretation of WV imagery
 1.1.8 Basic interpretation of 3.7 µm (channel-3) imagery
 1.1.8.1 General principles
 1.1.8.2 Interpretation of night-time 3.7 µm imagery
 1.1.8.3 Use of combined 3.7 µm and IR data for fog identification
 1.1.8.4 Interpretation of daytime 3.7 µm imagery

1.2 Simple identification 17

Lead authors: R. S. Scorer, P. G. Wickham
 1.2.1 Introduction
 1.2.2 Cloud types
 1.2.2.1 Convective clouds
 (a) Oceanic convective clouds
 (b) Continental convective storms
 1.2.2.2 Frontal layer clouds
 1.2.2.3 Stratus and fog
 1.2.2.4 Anticyclonic stratocumulus
 (a) Oceanic anticyclonic vortex
 (b) A continental anticyclone
 1.2.3 Cloud patterns
 1.2.3.1 Linear patterns
Contents

(a) Streets, bands and lines of convective clouds
(b) Lee waves and orographic clouds
(c) Rope clouds

1.2.3.2 Vortices
(a) Small vortices
(b) Synoptic-scale depressions
(c) Tropical storms

1.2.3.3 Cells
1.2.3.4 Clusters

1.2.4 The Earth’s surface
1.2.4.1 Land surface features
(a) Snow cover
(b) Deserts and vegetated areas
1.2.4.2 Sea surface features
(a) Sun glint
(b) Sea temperature gradients

1.2.5 Atmospheric pollutants
1.2.5.1 Dust and haze
1.2.5.2 Aircraft condensation trails (contrails)
1.2.5.3 Ship trails

2 Radar imagery

2.1 Basic principles

Lead authors: G. L. Austin, P. G. Wickham
2.1.1 The basic radar–rainfall relationship
2.1.2 Radar data presentation
 2.1.2.1 Plan position indicator (PPI)
 2.1.2.2 Constant altitude plan position indicator (CAPPI)
 2.1.2.3 Range–height indicator (RHI)
2.1.3 Problems in radar imagery interpretation
 2.1.3.1 Spurious echoes
 2.1.3.2 Anomalous propagation (anaprop)
 2.1.3.3 Secondary radar echoes
 (a) Second-trip echoes
 (b) Sidelobe echoes
 (c) Flare echoes
 2.1.3.4 Screening of precipitation by hills
 2.1.3.5 Growth and evaporation of precipitation below the beam
 2.1.3.6 Drop-size effects
 2.1.3.7 Snow and ice: bright bands
2.1.4 Adjustment of radar rainfall estimates using raingauge data
2.1.5 Doppler radar
 2.1.5.1 Basic principle
 2.1.5.2 Applications of Doppler radars in forecasting
 2.1.5.3 Interpretation of Doppler PPI displays

2.2 Simple identification

Lead author: P. G. Wickham. Contribution from D. Zrnić
(in Section 2.2.4)
2.2.1 Introduction
2.2.2 Rainfall from layered clouds
 2.2.2.1 Warm front rainbands
 2.2.2.2 Warm sector rainbands
 2.2.2.3 Cold front rainbands
2.2.3 Rainfall from convective clouds
 2.2.3.1 Scattered showers
 2.2.3.2 Lines of showers
 2.2.3.3 Thunderstorms
2.2.4 Severe storms
 2.2.4.1 Squall lines and thunderstorms
 2.2.4.2 Rotating thunderstorms and tornadoes

3 Synoptic-scale cloud and moisture patterns

Contributions from M. J. Bader (in Section 3.1.1) and
K. B. Katsaros (in Section 3.1.3.2)
3.1 Introduction
3.1.1 Panorama
 3.1.1.1 Clues from the satellite picture
 3.1.1.2 Physical and dynamical processes
 3.1.1.3 Interpretation of a satellite and radar picture
3.1.2 Kinematics
 3.1.2.1 Relative motion
 3.1.2.2 Deformation zones
 3.1.2.3 Vorticity and vorticity advection
3.1.3 Conveyor belts associated with fronts and waves
 3.1.3.1 Introduction to the conveyor belt conceptual model
 3.1.3.2 Warm conveyor belt (WCB)
 3.1.3.3 Cold conveyor belt (CCB)
 3.1.3.4 The dry airstream
3.2 Interpreting large-scale patterns of cirriform cloud and moisture

Lead author: R. K. Anderson

3.2.1 Introduction
3.2.2 Cirrus cloud bands
 3.2.2.1 Locating polar jet streams
 3.2.2.2 Locating the sub-tropical jet stream
 3.2.2.3 Locating turbulence associated with jet streams
3.2.3 Cirrus shields
 3.2.3.1 Locating thermal and upper ridges
 3.2.3.2 Locating thermal gradients
 3.2.3.3 Locating turbulence
3.2.4 Deformation zone cirrus and moisture
 3.2.4.1 Locating upper anticyclones
 3.2.4.2 Locating turbulence in deformation zones
 (a) Identification with cirrus
 (b) Identification with WV

3.3 Interpreting patterns of cumuliform clouds

Lead author: R. K. Anderson

3.3.1 Introduction
3.3.2 Locating thermal troughs
3.3.3 Locating upper short-wave troughs
3.3.4 Locating jet-stream axes
3.3.5 Locating surface ridges

3.4 Interpreting features associated with baroclinic troughs

Lead author: R. K. Anderson. Contributions from R. B. Weldon (in Sections 3.4.2 and 3.4.3)

3.4.1 Introduction
3.4.2 Leaf
 3.4.2.1 Characteristics of a leaf
 3.4.2.2 Relationship to analysis
 3.4.2.3 Leaf variations
 3.4.2.4 Leaf to comma transition
3.4.3 Comma
 3.4.3.1 Characteristic appearance
 3.4.3.2 Comma clouds in frontal zones
 3.4.3.3 Comma clouds in cold air
 3.4.3.4 The comma and turbulence
 (a) In the cusp region
 (b) In the dry slot of the comma
 (c) Near the comma tail
 (d) Near the poleward edge of the cold cloud shield

3.4.4 Vortex
 3.4.4.1 Characteristics of shape
 3.4.4.2 Relationship to analysis
 3.4.4.3 The vortex and turbulence

References

4 Fronts and waves

4.1 Classical cold fronts

Lead author: G. A. Monk. Contributions from M. Kurz (in Sections 4.1.2.1–4.1.2.3) and V. Zwatz-Meise (in Section 4.1.7)

4.1.1 Differences between classical and split fronts
4.1.2 Development of cold frontal cloud bands
 4.1.2.1 Characteristics on satellite images
 4.1.2.2 Upper air analysis
 4.1.2.3 Surface analysis and precipitation distribution
4.1.3 Frontogenesis using Q-vectors
4.1.4 Guidance on analysis from imagery
 4.1.4.1 A well developed cold front
 4.1.4.2 Weakening fronts
4.1.5 Surface weather
 4.1.5.1 Line convection
 4.1.5.2 Precipitation ahead of the surface front
 4.1.5.3 Precipitation behind the surface front
4.1.6 Squall line development
4.1.7 Interaction with jet streaks

4.2 Split cold fronts

Lead author: G. A. Monk

4.2.1 Development of split frontal cloud bands
4.2.2 Features on satellite images
4.2.3 Surface and upper air analyses
4.2.4 Conceptual model and surface weather
 4.2.4.1 The shallow moist zone
 4.2.4.2 Release of potential instability
 4.2.4.3 The surface front

4.3 Warm fronts

Lead author: V. Zwatz-Meise. Contribution from J. R. Grant (in Section 4.3.5)

4.3.1 Introduction
4.3.2 The cloud band
4.3.3 Cloud development in the warm sector
4.3.4 ’Detached’ warm frontal cloud
 4.3.4.1 Characteristics
 4.3.4.2 Examples
4.3.5 Precipitation distribution

4.4 Instant (pseudo) occlusions
 Lead author: M. Kurz. Extract from papers by McGinnigle,
 Young and Bader (in Section 4.4.1) and Browning and
 Hill (in Section 4.4.3)
4.4.1 Introduction
4.4.2 Synoptic scale
 4.4.2.1 Early in the evolution
 (a) Cloud characteristics and frontal analysis
 (b) Diagnostics
 4.4.2.2 Later in the evolution
 (a) Cloud characteristics and frontal analysis
 (b) Diagnostics
 (c) Airflow model
4.4.2.3 Final stage
 (a) Cloud characteristics and frontal analysis
 (b) Diagnostics
 (c) Airflow model
4.4.3 Mesoscale
 4.4.3.1 Alternative surface analysis
 4.4.3.2 Movement of precipitation areas

4.5 Synoptic-scale waves
 Lead author: M. Kurz. Contribution from V. Zwatz-Meise
 (in Section 4.5.4.4)
4.5.1 Introduction
4.5.2 Basic dynamical concepts
 4.5.2.1 Stable waves
 4.5.2.2 Unstable waves
4.5.3 Features on satellite images
4.5.4 Examples
 4.5.4.1 A cold front wave
 4.5.4.2 A stable warm front wave
 4.5.4.3 An unstable wave
 4.5.4.4 Upper-level waves
References

5 Depressions in mid-latitudes

5.1 Cloud signatures preceding cyclogenesis
 Lead authors: M. V. Young and J. R. Grant
 5.1.1 Introduction
5.1.2 Identifying key components
5.1.3 Upper-flow patterns from satellite images
 5.1.3.1 Frontal band and separate comma cloud
 5.1.3.2 Frontal band alone
 5.1.3.3 Frontal band with emerging cloud initially
 limited in extent
 5.1.3.4 Frontal band with emerging cloud elongated
 along the flow

5.2 Types of cyclogenesis
 Lead author: M. V. Young. Contributions from
 R. A. Bosworth (in Section 5.2.2.1), G. S. Forbes (in
 Section 5.2.3.1) and L. Neil (in Sections 5.2.2.1, 5.2.3.2
 and 5.2.3.3)
5.2.1 Introduction
5.2.2 Evolutions from enhanced cumulus or comma
 5.2.2.1 Cold air cyclogenesis
 5.2.2.2 Interaction with frontal cloud
 (a) Instant occlusion cyclogenesis
 (b) Split flow cyclogenesis
5.2.3 Evolutions from the main frontal cloud
 5.2.3.1 Meridional trough cyclogenesis
 5.2.3.2 Flat trough, diffluent flow cyclogenesis
 5.2.3.3 Induced wave cyclogenesis
5.2.4 Flat trough, confluent flow cyclogenesis (cloud head)
 5.2.4.1 Structure of a cloud head
 5.2.4.2 Conceptual model
 5.2.4.3 Surface weather
5.2.5 Summary
 5.2.5.1 Locating the surface low centre
 (a) Developing low within frontal cloud
 (b) Developing low poleward of frontal cloud
 (c) Mature low
 5.2.5.2 Overview of seven types of cyclogenesis
 5.2.5.3 Decision tree for determining cyclogenesis
 type

5.3 Mid-latitude cyclogenesis associated with
 tropical storms
 Lead author: M. V. Young. Contributions from
 R. J. Graham (in Section 5.3.3.2) and V. Pircher
 (in Section 5.3.3.1)
5.3.1 Introduction
5.3.2 Tropical storm regeneration
 5.3.2.1 Tropical storm ‘Helene’
 5.3.2.2 Tropical storm ‘Felix’
5.3.3 Cyclogenesis initiated by tropical storms
5.3.3.1 Tropical storm ‘Hortense’
5.3.3.2 Hurricane ‘Charley’
5.3.4 Forecasting guidelines

5.4 Oclusions and mature depressions

Lead authors: M. Kurz, M. V. Young. Contributions from J. R. Grant (in Sections 5.4.2.2, 5.4.2.3 and 5.4.2.4)

5.4.1 Introduction
5.4.2 Occluded fronts
 5.4.2.1 Development of an occlusion
 (a) Synoptic evolution
 (b) Characteristics of the occluded system
 5.4.2.2 Surface weather associated with an occlusion
 5.4.2.3 Locating the point of occlusion (triple point)
 5.4.2.4 Examples of mesoscale phenomena
 (a) A new development in the cloud band
 (b) Overrunning dry air
5.4.3 Cloud and weather in occluded depressions
 5.4.3.1 Synoptic scale
 5.4.3.2 Mesoscale
 5.4.3.3 Examples
 (a) Spiral band breaking up
 (b) Commas forming from a frontal band

5.5 Non-deepening depressions

Lead author: M. V. Young
5.5.1 Clues from imagery
5.5.2 Upper-air patterns
5.5.3 Examples

5.6 Polar lows

Lead author: E. A. Rasmussen
5.6.1 Introduction
5.6.2 Weather associated with polar lows
5.6.3 Polar lows within a synoptic-scale cold core aloft
5.6.4 Polar low development within a surface trough
5.6.5 Comma cloud associated with an upper trough
5.6.6 Waves associated with shallow baroclinic zones
5.6.7 Reverse-shear polar lows
5.6.8 A polar-low-like vortex in the Mediterranean

References

6 Convective cloud patterns

6.1 Overview

Lead author: J. F. W. Purdom. Contribution from A. J. Waters (in Section 6.1.2)

6.1.1 Introduction
6.1.2 Maritime patterns
6.1.3 Continental patterns
 6.1.3.1 Depiction in satellite imagery
 6.1.3.2 Depiction in radar imagery

6.2 Convection initiated over oceans

Lead authors: E. M. Agee, B. A. Hall, E. McCallum, G. A. Monk, A. J. Waters
6.2.1 Introduction
6.2.2 Cloud patterns and their relation to atmospheric structure
 6.2.2.1 Clear zones
 6.2.2.2 Cloud streets
 6.2.2.3 Closed cells
 6.2.2.4 Open cells
 6.2.2.5 Other patterns
6.2.3 Further examples of maritime convection
 6.2.3.1 Mesoscale vortices in a thermal trough
 6.2.3.2 The use of channel 3
 6.2.3.3 Enhancement over warm ocean currents
6.2.4 Modifications near coasts
 6.2.4.1 Shelter effects of land
 6.2.4.2 Cloud growth downwind of the coast
 6.2.4.3 The effect of bay and inlet shape
 6.2.4.4 Topographically induced convergence of flows
 6.2.4.5 Cellular convection over land

6.3 Topographically induced convective cloud patterns

Lead authors: D. Parsons, J. F. W. Purdom. Contributions from G. S. Forbes (in Section 6.3.10), R. B. E. Lilley (in Section 6.3.5.2) and G. A. Monk (in Section 6.3.2.2)
6.3.1 Introduction
6.3.2 Convection associated with sea-breezes
 6.3.2.1 Effects of the coastline shape: light winds
 6.3.2.2 Effects of the coastline shape: moderate winds
6.3.3 Convection associated with land-breezes
6.3.4 Land-based convection near inland water bodies
6.3.5 Winter time cloud bands
 6.3.5.1 Winter bands over and downwind of inland water bodies
 6.3.5.2 Winter bands near coasts
 6.3.5.3 Summary of winter time convective bands
6.3.6 The influence of initial cloud cover on subsequent convection
6.3.7 The influence of wet ground and vegetation on convection
6.3.8 The influence of cities on convection
6.3.9 Convection over elevated terrain
6.3.10 Orographically induced convergence zones and mesoscale vortices

6.4 Thunderstorm outflow and convective interaction 393
Lead author: J. F. W. Purdom
6.4.1 Introduction
6.4.2 Convective storm low-level outflow and arc cloud lines
6.4.3 Outflow boundaries and new thunderstorm development

6.5 Organized mesoscale convective systems 400
Lead author: J. F. W. Purdom. Contributions from
G. S. Forbes (in Sections 6.5.3.3 and 6.5.6),
R. B. E. Lilley (in Section 6.5.6.5), D. Parsons (in Sections 6.5.3 and 6.5.6), V. Pircher (in Section 6.5.5.2),
R. Scofield (in Section 6.5.2.3, 6.5.4 and 6.5.7) and
A. J. Waters (in Sections 6.5.1, 6.5.2.3, 6.5.5 and 6.5.6.2)
6.5.1 Introduction
6.5.2 Features in the pre-storm environment
 6.5.2.1 Moisture information in IR imagery
 6.5.2.2 Clouds as a clue to stability
 6.5.2.3 Water vapour imagery
6.5.3 Types of mesoscale convective systems
 6.5.3.1 Mobile squall lines
 6.5.3.2 Slow-moving squall lines
 6.5.3.3 Mesoscale convective complexes
6.5.4 Life-cycle and evolution of an MCS
 6.5.4.1 Forward propagating systems
 6.5.4.2 Backward propagating systems
 6.5.4.3 MCS evolution within a comma
6.5.5 Precipitation patterns in MCSs
 6.5.5.1 Convective and stratiform areas
 6.5.5.2 Distribution of precipitation beneath a cloud shield
6.5.6 Severe weather associated with MCSs
 6.5.6.1 Interaction of boundaries
 6.5.6.2 Overshooting tops
 6.5.6.3 Cold-to-warm couplets
 6.5.6.4 Wedge shapes
 6.5.6.5 Radar signatures
6.5.7 Summary of forecasting convection
References 443

7 Fog and low cloud 445
7.1 Radiation fog and stratus 445
Lead author: J. J. Gurka. Contribution from R. J. Allam (in Section 7.1.3.1)
7.1.1 Detection of fog in the daytime
7.1.2 Distinguishing between fog and stratus
7.1.3 Detection of fog at night
 7.1.3.1 Bispectral method
 7.1.3.2 Black fog
7.1.4 Formation of fog and stratus within moisture boundaries
7.1.5 Guidelines on formation and detection of fog
7.1.6 Dissipation of fog and stratus: the role of inward mixing
7.1.7 Guidelines for forecasting dissipation of fog

7.2 Sea fog 456
Lead author: J. J. Gurka. Extract from paper by J. Findlater (in Section 7.2.1)
7.2.1 Day-time imagery
7.2.2 Night-time imagery
7.2.3 Sea fog motion
7.2.4 The effect of coastlines and other mesoscale influences on fog

7.3 Stratocumulus 464
Lead author: P. G. Wickham. Contributions from
R. J. Allam (in Sections 7.3.1 and 7.3.6), G. Holpin (in Section 7.3.5) and W. T. Roach (in Section 7.3.3)
7.3.1 The appearance of stratocumulus
7.3.2 The importance of stratocumulus
7.3.3 The physical environment and evolution of stratocumulus
7.3.4 The motion of stratocumulus
7.3.5 Satellite observations of stratocumulus cloud-top temperature
7.3.6 Small-scale structure of stratocumulus
References 471
8 Orographic and polar phenomena 472

8.1 Clouds generated by mountains 472
Lead authors: R. S. Scorer, R. K. Anderson. Contribution from G. Ellrod (in Section 8.1.2)
8.1.1 Lee waves and orographic cirrus
8.1.2 Inferring areas of turbulence
8.1.3 Other examples

8.2 Mountain barrier effects: föhn 478
Lead author: H. P. Roesli
8.2.1 The barrage cloud
8.2.2 Fog

8.3 Polar phenomena 484
Lead authors: J. Turner, M. Row
8.3.1 Identifying clouds in polar imagery
 8.3.1.1 VIS and IR imagery
 8.3.1.2 3.7 μm (near-IR) imagery
 8.3.1.3 Discriminating clouds from sea ice

8.3.2 High-latitude cloud types
 8.3.2.1 Convective clouds
 8.3.2.2 Stratiform clouds
 8.3.2.3 Cirrus clouds

8.3.3 Topographical phenomena
 8.3.3.1 Drainage flow
 8.3.3.2 Downslope winds
 8.3.3.3 Lee effects
 8.3.3.4 Wind and sea ice motion

8.3.4 Vortices in the polar regions
 8.3.4.1 Ice-edge vortices
 8.3.4.2 Polar lows
 8.3.4.3 Mid-latitude depressions in the polar regions

References 490

Glossary of terms and abbreviations 491

Index 495