Chapter II. Nuclear Phenomenology

Introductory Remarks 28
Properties of Nuclei 28
 Labeling of Nuclei 28
 Masses of Nuclei 29
 Sizes of Nuclei 32
 Nuclear Spins and Dipole Moments 33
 Stability Curve 35
 Instability of Nuclei 36
Nature of the Nuclear Force 38
Problems 43
Suggested Readings 44

Chapter III. Nuclear Models

Introductory Remarks 45
Liquid Drop Model 46
The Fermi-Gas Model 48
Shell Model 51
Infinite Square Well 56
Harmonic Oscillator 57
Spin–Orbit Potential 59
Predictions of the Shell Model 62
Collective Model 64
Superdeformed Nuclei 66
Problems 67
Suggested Readings 68

Chapter IV. Nuclear Radiation

Introductory Remarks 69
Alpha Decay 69
Example 72
Barrier Penetration 73
Beta Decay 77
Gamma Decay 85
Problems 87
Suggested Readings 88

Chapter V. Applications of Nuclear Physics

Introductory Remarks 89
Fission 89
CONTENTS

Chain Reaction 96
Nuclear Fusion 98
Radioactive Decay 102
Example 1 104
Radioactive Equilibrium 106
Natural Radioactivity and Radioactive Dating 107
Example 2 109
Problems 110
Suggested Readings 112

Chapter VI. Energy Deposition in Media 113
 Introductory Remarks 113
 Energy Loss 114
 Charged Particles 114
 Units of Energy Loss and Range 117
 Example 1 118
 Example 2 118
 Straggling, Multiple Scattering, and Statistical Processes 119
 Example 3 120
 Energy Loss through Bremsstrahlung 121
 Example 4 123
 Interactions of Photons with Matter 124
 Photoelectric Effect 125
 Compton Scattering 126
 Pair Production 127
 Example 5 129
 Example 6 130
 Example 7 130
 Interactions of Neutrons 131
 Interaction of Hadrons at High Energies 131
 Problems 132
 Suggested Readings 133

Chapter VII. Particle Detection 134
 Introductory Remarks 134
 Ionization Detectors 134
 Ionization Counters 136
 Proportional Counters 138
 Geiger-Müller Counters 141
 Scintillation Detectors 142
Time of Flight 145
Cherenkov Detectors 148
Semiconductor Detectors 149
Calorimeters 150
Layered Detection 153
Problems 154
Suggested Readings 155

Chapter VIII. Accelerators 156
Introductory Remarks 156
Electrostatic Accelerators 157
 Cockcroft-Walton Machines 157
 Van de Graaff Accelerator 158
Resonance Accelerators 159
 Cyclotron 159
Example 161
 Linac or Linear Accelerator 162
Synchronous Accelerators 163
Phase Stability 166
Strong Focusing 168
Colliding Beams 170
Problems 173
Suggested Readings 175

Chapter IX. Properties and Interactions of Elementary Particles 176
Introductory Remarks 176
Forces 177
Elementary Particles 180
Quantum Numbers 183
 Baryon Number 183
 Lepton Number 184
 Strangeness 185
 Isospin 188
Gell-Mann–Nishijima Relation 190
Production and Decays of Resonances 192
Determining Spins 194
Violation of Quantum Numbers 198
 Weak Interactions 198
 Hadronic Weak-Decays 198
Chapter X. Symmetries

Introductory Remarks 203
Symmetries in the Lagrangian Formalism 204
Symmetries in the Hamiltonian Formalism 208
Infinitesimal Translations 209
Infinitesimal Rotations 212
Symmetries in Quantum Mechanics 214
Continuous Symmetries 217
Example—Isotopic Spin 221
Local Symmetries 224
Problems 226
Suggested Readings 226

Chapter XI. Discrete Transformations

Introductory Remarks 227
Parity 227
Example 1—Parity of π^- Meson 232
Example 2—Parity of $\Delta(1232)$ 233
Violation of Parity 233
Time Reversal 235
Charge Conjugation 238
CPT Theorem 241
Problems 241
Suggested Readings 242

Chapter XII. Neutral Kaons and CP Violation

Introductory Remarks 243
Neutral Kaons 244
CP Eigenstates of Neutral Kaons 246
Strangeness Oscillation 248
K^0_l Regeneration 249
Violation of CP Invariance 250
Time Development and Analysis of the $K^0-\bar{K}^0$ System 254
Semileptonic K^0 Decays 260
Problems 262
Suggested Readings 263
Chapter XIII. The Standard Model 264

Introductory Remarks 264
Quarks and Leptons 265
Quark Content of Mesons 266
Quark Content of Baryons 268
Need for Color 269
Example—Quark Model for Mesons 271
Weak Isospin and Color Symmetry 273
Gauge Bosons 274
Dynamics of the Gauge Particles 276
Symmetry Breaking 279
Quantum Chromodynamics and Confinement 284
Quark-Gluon Plasma 288
Comments on Phenomenology and Comparison with Data 289
Problems 294
Suggested Readings 295

Chapter XIV. Beyond the Standard Model 296

Introductory Remarks 296
Grand Unification 297
Supersymmetry 301
Supergravity, Superstrings 304
Suggested Readings 307

Appendix A Special Relativity 309

Appendix B Spherical Harmonics 313

Appendix C Spherical Bessel Functions 315

Appendix D Basics of Group Theory 317

Appendix E Table of Physical Constants 322

Index 323