Contents

PART 1: CRYSTALLIZATION PROCESSES
(A.A. Chernov)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Equilibrium</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Phase Equilibrium</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1</td>
<td>One-Component Systems</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Multicomponent Systems</td>
<td>4</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Crystallization Pressure</td>
<td>8</td>
</tr>
<tr>
<td>1.2</td>
<td>Surface Energy and Periodic Bond Chains</td>
<td>9</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Surface Energy</td>
<td>9</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Periodic Bond Chains and Estimates of the Surface Energy</td>
<td>10</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Surface Energy Anisotropy</td>
<td>13</td>
</tr>
<tr>
<td>1.3</td>
<td>Atomic Structure of the Surface</td>
<td>17</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Surface Configurations and Their Energies</td>
<td>17</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Adsorption Layer</td>
<td>21</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Step Roughness</td>
<td>24</td>
</tr>
<tr>
<td>1.3.4</td>
<td>Surface Roughness</td>
<td>26</td>
</tr>
<tr>
<td>1.4</td>
<td>Phase Equilibrium with Allowance for Surface Energy. Equilibrium Shape of a Crystal</td>
<td>37</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Phase Equilibrium over a Curved Surface</td>
<td>37</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Equilibrium Shape of a Crystal</td>
<td>40</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Average Detachment Work. Finding Faces of Equilibrium Shape</td>
<td>42</td>
</tr>
<tr>
<td>1.4.4</td>
<td>Experimental Observation of an Equilibrium Shape</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>Nucleation and Epitaxy</td>
<td>48</td>
</tr>
<tr>
<td>2.1</td>
<td>Homogeneous Nucleation</td>
<td>48</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Work and Rate of Nucleation. Size and Shape of Nuclei</td>
<td>48</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Critical Supersaturation and Metastability Boundary in Vapors</td>
<td>51</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Nucleation in Condensed Phases</td>
<td>54</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Transient Nucleation Processes</td>
<td>62</td>
</tr>
<tr>
<td>2.2</td>
<td>Heterogeneous Nucleation</td>
<td>64</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Work and Rate of Nucleation. Size and Shape of Nuclei</td>
<td>64</td>
</tr>
</tbody>
</table>
2.2.2 Atomistic Picture of Nucleation. Clusters 70
2.2.3 Decoration. Initial Stages of Growth 79
2.2.4 Activity of Solid Surfaces in Melts 84

2.3 Epitaxy 85
2.3.1 Principal Manifestations 85
2.3.2 Thermodynamics 88
2.3.3 Kinetics 94
2.3.4 Misfit Dislocations and the Conditions of Pseudomorphism 98

3 Growth Mechanisms 104
3.1 Normal and Layer Growth of Crystals 104
3.1.1 Conditions of Normal and Layer Growth 104
3.1.2 Kinetic Coefficients in Normal Growth 105
3.1.3 Layer Growth and the Anisotropy of the Surface Growth Rate 111
3.2 Layer Growth in Different Phases 116
3.2.1 Growth from Vapor 116
3.2.2 Growth from Solution 122
3.2.3 Growth from the Melt 126
3.3 Layer Sources and Face Growth Rates 127
3.3.1 Nuclei 127
3.3.2 Dislocations 129
3.3.3 Kinetic Coefficient and Anisotropy of Face Growth 135
3.3.4 Experimental Data on Layer Sources 137
3.4 Morphology of a Surface Growing Layerwise 143
3.4.1 Optical Methods Used to Investigate Growth Processes and Surfaces 143
3.4.2 Steps, Vicinal Hillocks, and the Formation of Dislocations During Vapor Growth 150
3.4.3 Kinematic Waves and Macrosteps 153
3.4.4 Surface Melting 156

4 Impurities 159
4.1 Effect of Impurities on Growth Processes 159
4.1.1 Thermodynamics and Structure of Solutions 159
4.1.2 Adsorption 161
4.1.3 Dependences of Growth and Morphology on the Concentration of Impurities 165
4.2 Trapping of Impurities: Classification and Thermodynamics 169
4.2.1 Classification 169
4.2.2 Thermodynamics 169
4.2.3 Equilibrium Impurity Distribution in a Crystal-Melt System 173
4.2.4 Equilibrium Impurity Distribution in a Crystal-Solution System ... 178
4.2.5 Equilibrium in the Surface Layer .. 184
4.2.6 Mutual Effects of Impurity Particles .. 185
4.3 Trapping of Impurities: Kinetics .. 187
 4.3.1 Surface Processes ... 187
 a) Statistical Selection ... 188
 b) Diffusional Relaxation .. 191
 c) Sectorial Structure .. 192
 d) Vicinal Sectoriality .. 193
 e) Rapid Diffusionless Crystallization .. 195
 4.3.2 Pulse Annealing ... 197
 4.3.3 Diffusion in the Mother Medium .. 202
 4.3.4 Observed Distribution Coefficients .. 204

5 Mass and Heat Transport. Growth Shapes and Their Stability 208
 5.1 Mass and Heat Transfer in Crystallization .. 208
 5.1.1 Stagnant Solution. Kinetic and Diffusion Regimes 209
 5.1.2 Stirred Solution. Summation of Resistances 211
 5.1.3 Kinetic and Diffusion Regimes in the Melt 213
 5.1.4 Diffusion Field of a Polyhedron .. 216
 5.2 Growth Shapes ... 219
 5.2.1 Kinematics ... 219
 5.2.2 Determination of Crystal Habit by the PBC Method 220
 5.2.3 The Bravais-Donnay-Harker Rule ... 223
 5.2.4 Effect of Growth Conditions .. 225
 5.2.5 Faceting Effect .. 228
 5.3 Stability of Growth Shapes .. 230
 5.3.1 Sphere ... 230
 5.3.2 Polyhedron ... 234
 5.3.3 Plane ... 240

6 Creation of Defects ... 246
 6.1 Inclusions ... 247
 6.1.1 Inclusions of the Mother Liquor ... 247
 6.1.2 Inclusions of Foreign Particles .. 250
 6.2 Dislocations, Internal Stresses and Grain Boundaries 256
 6.2.1 Dislocations from a Seed ... 256
 6.2.2 Creation of Dislocations in Surface Processes 256
 6.2.3 Orientation of Dislocations .. 259
 6.2.4 Thermal Stresses .. 260
 6.2.5 Dislocations Related to Vacancies and Impurities 273
 6.2.6 Grain Boundaries .. 276
7 Mass Crystallization
7.1 Solidification Kinetics and Grain Size
7.2 Geometric Selection and Ingot Formation
7.3 Heat and Mass Transfer
7.4 Ripening (Coalescence)
7.5 Principles of Industrial Crystallization of Nonmetals

PART 2: THE GROWING OF CRYSTALS
(E.I. Givargizov, K.S. Bagdasarov, V.A. Kuznetsov, L.N. Demianets, A.N. Lobachev)

8 Growth from the Vapor Phase
8.1 Overview
8.2 The Physicochemical Bases of Crystallization from the Vapor Phase
 8.2.1 Surface Activity and the Preparation of Substrates and Seeds
 8.2.2 Particle Flux Density in a Molecular Beam. Concentration of the Substance in the Medium
 8.2.3 Structural Perfection of Crystals. Minimal, Maximal, and Optimal Supersaturations. Epitaxial Temperature
 8.2.4 Heteroepitaxial Growth
 8.2.5 Oriented Crystallization on Amorphous Substrates
8.3 Physical Vapor Deposition
 8.3.1 Molecular-Beam Method
 8.3.2 Cathode Sputtering
 8.3.3 Vapor Phase Crystallization in a Closed System
 8.3.4 Gas Flow Crystallization
8.4 Chemical Vapor Deposition (CVD)
 8.4.1 Chemical Transport
 8.4.2 Vapor Decomposition Methods
 8.4.3 Vapor-Synthesis Methods
8.5 Externally Assisted Vapor Growth
8.6 Crystallization from the Vapor via a Liquid Zone
 8.6.1 A General Description of the Vapor-Liquid-Solid Growth Mechanism (VLS)
 8.6.2 Growth Kinetics by the VLS Process
 8.6.3 The VLS Mechanism and Basic Regularities in Whisker Growth
9 Growth from Solutions

9.1 The Physicochemical Basis of Growth from Solutions
9.1.1 Thermodynamic Conditions and Classification of the Methods
9.1.2 Mechanisms of Growth from Solutions

9.2 Growth from Low-Temperature Aqueous Solutions
9.2.1 Methods of Growing Crystals from Low-Temperature Aqueous Solutions
a) Crystallization by Changing the Solution Temperature
b) Temperature-Difference Methods
c) Crystallization by Concentration-Induced Convection
d) Crystallization by Solvent Evaporation
e) Growth from Aqueous Solutions at a Constant Temperature and a Constant Supersaturation
f) Crystallization by Chemical Reaction
g) Growth in Gel Media
h) Crystallization by Electrochemical Reaction

9.2.2 Growth of KDP and ADP Crystals

9.3 Growth and Synthesis in Hydrothermal Solutions
9.3.1 Methods of Growing Crystals from Hydrothermal Solutions
a) Temperature-Difference Method
b) Temperature-Reduction Technique
c) "Metastable-Phase" Technique

9.3.2 Equipment for Hydrothermal Crystal Growth
9.3.3 Hydrothermal Solutions. Solvent Characteristics
9.3.4 Interaction of the Crystallizing Substance with the Solvent
9.3.5 Hydrothermal Growth of Crystals
9.3.6 Defects and Methods for Their Elimination in Crystals Grown Hydrothermally
9.3.7 Some Crystals Grown by the Hydrothermal Method

9.4 Growing from High-Temperature Solutions (Flux Growth)

10 Growth from the Melt

10.1 The Physicochemical Bases of Growing Single Crystals from the Melt
10.1.1 State of the Melt ... 416
10.1.2 Container Material .. 419
10.1.3 Crystallization Atmosphere 420

10.2 Principal Methods of Growing Single Crystals from the Melt 423
10.2.1 Kyropoulos and Czochralski Methods 424
10.2.2 Stockbarger-Bridgman Method 429
10.2.3 Verneuil Method .. 432
10.2.4 Zone Melting ... 436
10.2.5 Heat Transfer in Crystal and Melt 440
10.2.6 Temperature Control and Stabilization Systems 441
10.2.7 The Automatic Control System for Growing Single
 Crystals .. 443
10.2.8 Choosing a Method for Crystal Growth 445

10.3 Defects in Crystals Grown from the Melt and Ways to Control
 the Real Structure of Grown Crystals 445
10.3.1 Foreign Inclusions .. 446
10.3.2 Impurities .. 449
10.3.3 Residual Stresses, Dislocations, and Grain Boundaries 454

List of Symbols .. 456

Bibliography .. 462
References .. 467
Materials Index .. 495
Subject Index .. 503