Contents of Volume 1

How to Use this Book xiii
Preface to the Series xix
Editorial Consultants to the Series xxiii
Contributors to Volume 1 xxv

1. The Formation of Bonds to Hydrogen

(Part 1)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.1.</td>
<td>Introduction by Reactions of Hydride Ions with Hydrogen Halides.</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2.</td>
<td>with OH Groups and Acids in OH Systems.</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2.3.</td>
<td>with SH and SeH Groups and Acids in SH and SeH Systems.</td>
<td>11</td>
</tr>
<tr>
<td>1.2.2.4.</td>
<td>with NH Groups and Acids in NH Systems.</td>
<td>12</td>
</tr>
<tr>
<td>1.2.2.5.</td>
<td>with PH and AsH Groups and Acids in PH and AsH Systems.</td>
<td>14</td>
</tr>
<tr>
<td>1.2.3.</td>
<td>by Reactions of Complex Hydrides with Hydrogen Halides.</td>
<td>16</td>
</tr>
<tr>
<td>1.2.3.2.</td>
<td>with OH Groups and Acids in OH Systems.</td>
<td>18</td>
</tr>
<tr>
<td>1.2.3.3.</td>
<td>with SH and SeH Groups and Acids in SH and SeH Systems.</td>
<td>21</td>
</tr>
<tr>
<td>1.2.3.4.</td>
<td>with NH Groups and Acids in NH Systems.</td>
<td>22</td>
</tr>
<tr>
<td>1.2.3.5.</td>
<td>with PH and AsH Groups and Acids in PH and AsH Systems.</td>
<td>25</td>
</tr>
<tr>
<td>1.2.4.</td>
<td>by Reactions of Metals with Hydrogen Halides.</td>
<td>27</td>
</tr>
<tr>
<td>1.2.4.2.</td>
<td>with OH Groups and Acids in OH Systems.</td>
<td>29</td>
</tr>
<tr>
<td>1.2.4.3.</td>
<td>with SH and SeH Groups and Acids in SH and SeH Systems.</td>
<td>33</td>
</tr>
<tr>
<td>1.2.4.4.</td>
<td>with NH Groups and Acids in NH Systems.</td>
<td>34</td>
</tr>
<tr>
<td>1.2.4.5.</td>
<td>with PH and AsH Groups and Acids in PH and AsH Systems.</td>
<td>37</td>
</tr>
<tr>
<td>1.2.5.</td>
<td>by Reactions of Nonmetals and Semimetals with Hydrogen Halides.</td>
<td>38</td>
</tr>
<tr>
<td>1.2.5.1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Formation of Hydrogen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>by Reactions of Nonmetals and Semimetals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2.5.2. with OH Groups and Acids in OH Systems</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>1.2.5.3. with SH and SeH Groups and Acids in SH and SeH Systems</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>1.2.5.4. with NH Groups and Acids in NH Systems</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>1.2.5.5. with PH and AsH Groups and Acids in PH and AsH Systems</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>1.2.6. by Electrolytic Reduction</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>1.2.6.1. of Hydrogen Halides</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>1.2.6.2. of OH Systems</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>1.2.6.3. of SH and SeH Systems</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>1.2.6.4. of NH Systems</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>1.2.6.5. of PH and AsH Systems</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>1.2.7. by Reactions of Water</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>1.2.7.1. with Carbon</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>1.2.7.2. with Saturated Hydrocarbons</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>1.2.7.3. with Unsaturated Hydrocarbons</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>1.2.7.4. with CO</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>1.2.7.5. Involving Water Splitting</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>1.2.7.5.1. in Electrochemical Reactions</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>1.2.7.5.2. in Chemical Reactions Involving Main-Group Elements</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>1.2.7.5.3. in Chemical Reactions Involving Transition and Inner-Transition Metals</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>1.2.7.6. with Other OH-Containing Compounds</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>1.2.8. by Partial Oxidation of Hydrocarbons</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>1.2.9. Isotopes: Deuterium—Chemical Preparation of D₂ and D₂O</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>1.2.9.1. by Interconversion of Deuterated Compounds</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>1.2.9.1.1. in Reactions between D₂O and Active Metals</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>1.2.9.1.2. in Electrolyses of Salts Dissolved in D₂O</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>1.2.9.1.3. in HD Synthesis</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>1.2.9.2. by Isotopic Enrichment</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>1.2.9.2.1. Principles and Reactions</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>1.2.9.2.2. Catalysis of Hydrogen–Water Isotope Exchange</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>1.2.9.2.3. Catalysis of Hydrogen–Ammonia (Amine) Exchange</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>1.2.9.2.4. Other Processes</td>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>

1.3. The Formation of Hydrogen–Halogen Bonds

1.3.1. Introduction | 77 |
1.3.2. by Reactions of Hydrogen | 79 |
1.3.2.1. with Fluorine. 79
1.3.2.2. with Chlorine. 79
1.3.2.3. with Bromine. 80
1.3.2.4. with Iodine. 81
1.3.3. by Reactions of Protonic Acids 82
1.3.3.1. with Fluoride Ions. 82
1.3.3.2. with Chloride Ions. 84
1.3.3.3. with Bromide Ions. 85
1.3.3.4. with Iodide Ions. 86
1.3.3.5. with Complex Halides. 87
1.3.4. by Hydrolysis 88
1.3.4.1. of Fluorides. 88
1.3.4.2. of Chlorides. 90
1.3.4.3. of Bromides. 92
1.3.4.4. of Iodides. 94
1.3.4.5. of Complex Fluorides. 95
1.3.5. by Industrial Processes. 96
1.3.6. in Syntheses of Deuterium Halides. 98
1.3.7. in Syntheses of Hydrogen Astatide. 100

1.4. The Formation of Bonds between Hydrogen and Elements of Group VIB (O, S, Se, Te, Po) 102

1.4.1. Introduction 102
1.4.1.1. Scope 102
1.4.1.2. Classification 102
1.4.1.3. Safety and Toxicity 103
1.4.2. by Reactions of Elemental Hydrogen 104
1.4.2.1. with Elemental Oxygen 104
1.4.2.1.1. in the Gas Phase. 104
1.4.2.1.2. in the Gas Phase under Irradiation or Electrical Discharge Giving Hydrogen Peroxide. 106
1.4.2.1.3. under Metal Catalysis Giving Hydrogen Peroxide. 108
1.4.2.1.4. under Metal Catalysis Giving Water. 109
1.4.2.2. with Elemental Sulfur 111
1.4.2.2.1. Kinetics 111
1.4.2.2.2. Equilibrium Constants 112
1.4.2.2.3. The Influence of Catalysts on the Formation of Hydrogen Sulfide 115
1.4.2.2.4. Induction by Radiation 117
1.4.2.3. with Elemental Selenium and Tellurium 118
1.4.2.3.1. The Formation of Hydrogen Selenide 118
1.4.2.3.2. The Formation of Hydrogen Telluride 119
1.4.2.4. with Elemental Polonium 119
The Formation of Bonds between Hydrogen and Elements of Group VIB (O, S, Se, Te, Po)
by Reactions of Elemental Hydrogen with Elemental Oxygen

1.4.2.4.1. The Questionable Existence and Stoichiometry of a Polonium Hydride 119
1.4.2.4.2. Reaction of Dihydrogen with Polonium 120
1.4.2.4.3. Reaction of Nascent Hydrogen with Polonium 120
1.4.2.5. with Oxygen Compounds 120
1.4.2.5.1. in Reductions of Metal Oxides. 120
1.4.2.5.2. in Reductions of Metal Sulfates. 124
1.4.2.5.3. in Reductions of Main-Group Compounds Other than Carbon Oxides. 127
1.4.2.5.4. in Reductions of Oxides of Carbon. 128
1.4.2.5.5. in the Reverse Water-Gas Shift Reaction. 130
1.4.2.5.6. in the Formation of Methanoic Acid. 133
1.4.2.5.7. in Methanation Reactions. 133
1.4.2.5.8. in the Formation of Methanol by Heterogeneous Catalysis. 137
1.4.2.5.9. in the Formation of Methanol and Other Alcohols by Homogeneous Interactions. 140
1.4.2.6. with Sulfur Compounds 143
1.4.2.6.1. in Reductions of Metal Sulfides. 143
1.4.2.6.2. in Reductions of Sulfur Dioxide. 146
1.4.2.6.3. in Reductions of Carbon Disulfide. 146
1.4.2.6.4. in Reductions of Sulfur Halides. 147
1.4.2.6.5. in Reductions of Salts of Sulfur Oxyacids. 148
1.4.2.7. with Selenium and Tellurium Compounds 149
1.4.2.7.1. in Reductions of Selenides. 149
1.4.2.7.2. in Reductions of Tellurides. 150
1.4.2.8. with Polonium Halides. 150
1.4.3. by Reactions of Hydrogen-Containing Compounds 150
1.4.3.1. with Elemental Oxygen 150
1.4.3.1.1. in Heterogeneously Catalyzed Oxidations. 150
1.4.3.1.2. in the Formation of Hydrogen Peroxide and Hydroperoxo Species. 151
1.4.3.2. with Elemental Sulfur 152
1.4.3.2.1. in Reactions of Compounds Containing the Hydrogen–Carbon Bond. 152
1.4.3.2.2. in Reactions of Compounds Containing the Hydrogen–Oxygen Bond. 154
1.4.3.2.3. in Reactions of Compounds Containing Bonds Other than Carbon–Hydrogen or Oxygen–Hydrogen. 156
1.4.3.3. with Elemental Selenium and Tellurium 157
1.4.3.3.1. in Cleavage of the Carbon–Hydrogen Bond by Selenium. 157
1.4.3.3.2. in Cleavage of the Oxygen–Hydrogen Bond by Selenium. 158
1.4.3.3.3. in Cleavage of the Carbon–Hydrogen Bond by Tellurium. 158
1.4.4. by Reactions of Aqueous Acids 158
1.4.4.1. with Oxides 158
1.4.4.1.1. in the Preparation of Hydrogen Peroxide from Metal Peroxides. 158
1.4.4.1.2. in the Cathodic Reduction of Dioxygen in Aqueous Solution. 159
1.4.4.2. with Sulfides 161
1.4.4.2.1. in the Preparation of Hydrogen Sulfide. 161
1.4.4.2.2. in Preparations of Higher Sulfanes. 164
1.4.4.2.3. in the Formation of Hydrogen Sulfide in Cathodic Reductions. 166
1.4.4.2.4. in the Formation of Higher Sulfanes in Cathodic Reductions. 167
1.4.4.3. with Selenides and Tellurides 167
1.4.4.3.1. in Preparations of Hydrogen Selenide from Acids and Metal Selenides. 167
1.4.4.3.2. in the Preparation of Hydrogen Selenide by Cathodic Reduction. 168
1.4.4.3.3. in the Formation of Diselenane. 169
1.4.4.3.4. in Preparations of Hydrogen Telluride from Acids and Metal Tellurides. 169
1.4.4.3.5. in the Preparation of Hydrogen Telluride by Cathodic Reduction in Acid Electrolyte. 170
1.4.4.4. in the Cathodic Reduction of Polonium. 172
1.4.5. by Reactions of Protonic Acids 172
1.4.5.1. with Oxides 172
1.4.5.1.1. in Preparations of Sulfonic Acids. 172
1.4.5.1.2. in the Formation of Other Compounds Containing Hydrogen–Oxygen Bonds. 173
1.4.5.2. with Sulfides 174
1.4.5.2.1. in Preparations of Hydrogen Sulfide and Sodium Hydrogen Sulfide. 174
1.4.5.2.2. in Preparations of the Higher Sulfanes. 174
1.4.5.2.3. in Preparations of Anhydrous Acids of Sulfur. 175
1.4.5.3. with Selenides Giving Hydrogen Selenide. 176
1.4.6. by Reactions of Covalent Hydrides 176
1.4.6.1. with Oxygen Compounds 176
1.4.6.1.1. in the Hydrolysis of Peroxodisulfate Giving Hydrogen Peroxide. 176
The Formation of Bonds between Hydrogen and Elements of Group VIB (O, S, Se, Te, Po)

1.4.6. by Reactions of Covalent Hydrides
1.4.6.1. with Oxygen Compounds
1.4.6.1.2. in the Formation of Water by Reactions Involving Hydrogen Sulfide. 178
1.4.6.1.3. in the Formation of Water by Thermal Decomposition of Ammonium Salts. 180
1.4.6.2. with Sulfur Compounds 182
1.4.6.2.1. in Hydrolyses of Metal Sulfides. 182
1.4.6.2.2. in Hydrolyses and Ammonolyses of Carbon Sulfides. 183
1.4.6.2.3. in Hydrolyses of Organosulfur Compounds. 186
1.4.6.2.4. in the Reduction of Sulfur Dioxide by Methane. 186
1.4.6.2.5. in Reductions of Sulfur Compounds by Hydrogen Iodide. 188
1.4.6.2.6. in Reductions of Sulfur Compounds by Other Main-Group Hydrides. 191
1.4.6.3. with Selenium and Tellurium Compounds 192
1.4.6.3.1. in the Formation of Hydrogen Selenide by Hydrolysis of Selenides. 192
1.4.6.3.2. in the Formation of Selenols by Hydrolysis of Selenolates. 192
1.4.6.3.3. in Reductions of Selenium(IV) Species. 193
1.4.6.3.4. in the Formation of Hydrogen Telluride by Hydrolysis of Tellurides. 193
1.4.6.3.5. in the Alcoholysis of Aluminum Selenide and Telluride. 193
1.4.7. by Reactions of Binary Metal Hydrides 193
1.4.7.1. with Oxygen Compounds 193
1.4.7.1.1. in Reductions of Carbon Oxides and Carbonates. 193
1.4.7.1.2. in Reductions of Metal Oxides. 194
1.4.7.2. with Sulfur Compounds and Elemental Sulfur. 196
1.4.8. by Reactions of Complex Hydrides 196
1.4.8.1. with Oxygen Compounds 196
1.4.8.1.1. in Reductions of Carbon Oxides and Oxyhalides. 196
1.4.8.1.2. in Reductions of Organic Compounds to Hydroxy Species. 199
1.4.8.1.3. in Reductions of Metal Oxides. 200
1.4.8.2. with Sulfur Compounds 200
1.4.8.2.1. in Reductions of Oxy Compounds of Sulfur. 200
Contents of Volume 1

1.4.8.2.2. in Reductions of Halides of Sulfur. 201
1.4.8.2.3. in Reductions of Other Compounds of Sulfur. 202
1.4.8.2.4. in Reductions of Elemental Sulfur. 203
1.4.8.3. with Selenium and Tellurium Compounds 204
1.4.8.3.1. in Reductions of the Elements by Tetrahydroborate. 204
1.4.8.3.2. in Reductions of Oxy Compounds of Selenium and Tellurium by Complex Hydrides. 205
1.4.8.4. with Polonium Halides. 206
1.4.9. by Industrial Processes 206
1.4.9.1. Involving Oxygen Compounds 206
1.4.9.1.1. in the Production of Hydrogen Peroxide. 206
1.4.9.1.2. in Methanation Reactions. 209
1.4.9.1.3. in the Production of Methanol. 210
1.4.9.2. Involving Sulfur Compounds 212
1.4.9.2.1. in the Hydrogenation of Sulfur or Sulfides Giving Hydrogen Sulfide. 212
1.4.9.2.2. in the Formation of Hydrogen Sulfide by Hydrodesulfurization. 213
1.4.9.2.3. in the Reduction of Sulfur Dioxide to Hydrogen Sulfide. 215
1.4.9.2.4. in the Production of Hydrogen Sulfide from Hydrocarbons. 216
1.4.9.2.5. in the Production of Hydrogen Sulfide from Alkaline-Earth Sulfides. 218
1.4.9.3. Involving Selenium and Tellurium: The Hydride Method of Refining the Elements. 219
1.4.10. in Syntheses of Deuterium Derivatives 220
1.4.10.1. by Interconversion of Deuterated Compounds 220
1.4.10.1.1. with Oxygen Compounds. 220
1.4.10.1.2. with Sulfur Compounds. 221
1.4.10.1.3. with Selenium and Tellurium Compounds. 222
1.4.10.2. by Isotopic Enrichment Using Chemical Reactions 222
1.4.10.2.1. with Oxygen Compounds. 222
1.4.10.2.2. with Sulfur Compounds. 227
1.4.10.2.3. with Selenium and Tellurium Compounds. 228

List of Abbreviations 231
Author Index 237
Compound Index 263
Subject Index 317