Contents

1. Introduction
References

2. Amorphous and Vitreous State of Inorganic Substances
 2.1 Methods of Preparing Amorphous Solids and Glasses
 2.1.1 Glasses from the Melt
 2.1.1.1 Oxide Glasses
 2.1.1.2 Chalcogenide Glasses
 2.1.1.3 Metallic Glasses
 2.1.1.4 Variation of Cooling Rate of Glass Melts
 2.1.2 Amorphous Solids from Solutions
 2.1.2.1 Glasses Formed by Homogeneous Precipitation of Gels
 2.1.2.2 Amorphous Precipitates
 2.1.3 Amorphous Layers from the Gaseous Phase
 2.1.3.1 Methods Using Thermal Evaporation under Vacuum
 Evaporation under Equilibrium Conditions (Knudsen Conditions)
 Evaporation in the Free Vacuum (Langmuir Conditions)
 Flash Evaporation and Plasma Jet Evaporation
 2.1.3.2 Amorphous Layers Generated by Cathode Sputtering
 2.1.3.3 Deposition of Amorphous Layers in a Glow Discharge
 2.1.3.4 Chemical Vapour Deposition
 2.1.4 Transformation of Crystalline Solids to the Amorphous State
 2.1.4.1 Amorphous Solids Formed by Mechanical Processing
 2.1.4.2 Amorphous Solids Formed by Irradiation
 2.1.4.3 Generation of Amorphous States by Shock Waves
 2.1.4.4 Reactions of Crystalline Solids with Formation of Glasses
 2.2 Thermodynamic Description of the Glassy State
 2.2.1 Relaxation Behaviour in Liquid and Vitreous States
 2.2.1.1 Mechanical Relaxation
 2.2.1.2 Thermal and Structural Relaxation Processes
 2.2.1.3 Temperature Dependence of Viscosity
 2.2.1.4 Structural Relaxation and Digital Correlation Spectroscopy
 2.2.2 The Glass Transition Temperature
References
Contents

2.2.2.1 Methods for Determining the Glass Transition Temperature 42

- Expansion measurements 43
- DTA and DSC Measurements 44

2.2.2.2 The Glass Transition Temperature and Thermal Expansion 46

2.2.2.3 The Glass Transition Temperature and Heat Capacity 50

2.2.2.4 The Glass Transition Temperature and the Melting Temperature 51

2.2.2.5 The Glass-Forming Tendency 52

2.2.3 Thermodynamic Functions and the Glass Transition 54

2.2.3.1 The Kauzmann Paradox 55

2.2.3.2 The Prigogine-Defay Condition 57

2.2.3.3 Thermal Properties at Low Temperatures 58

2.3 Phase Transformation Processes and Glass Formation 60

2.3.1 Separation of Phases from Glass Melts 60

2.3.1.1 Nucleation and Crystal Growth 60

- Homogeneous Steady State Nucleation 61
- Time Dependent Nucleation 62
- Heterogeneous Nucleation 63
- The Velocity of Crystallization 64
- Crystallinity as a Function of Time 65

2.3.1.2 Phase Separation Phenomena 65

- Thermodynamics of Phase Separation 66
- Kinetics of Phase Separation 68

2.3.2 The Critical Cooling Rate and the Glass-Forming Tendency 69

2.4 Structure and Chemical Bonding in Glasses and Amorphous Solids 72

2.4.1 Fundamental Methods for Investigating the Structures of Noncrystalline Solids 73

2.4.1.1 Diffraction Methods 73

- X-Ray Diffraction 73
- Neutron Diffraction 78
- Electron Diffraction 78
- The EXAFS Method 79

2.4.1.2 Infrared and Raman Spectroscopy 80

- Lattice Model for the Vibrational Spectra of Noncrystalline Solids 80
- Molecular model for the Vibrational Spectra of Glasses 84

2.4.1.3 Other Methods of Solid State Analysis 85

- Photoelectron Spectroscopy 85
- Electron Spin Resonance (ESR) Spectroscopy 86
- Nuclear Magnetic Resonance (NMR) Spectroscopy 86
- Mössbauer Spectroscopy 87
- UV/VIS Spectroscopy 88

2.4.1.4 Chemical Methods for Elucidating the Structure of Glasses 88

2.4.2 Structural Theories of Glass Formation 89

2.4.2.1 Prototype Glass-Forming Compounds 90

2.4.2.2 Network Model of Glass Formers 91

2.4.2.3 Cluster Models 94

2.4.2.4 The Role of the Chemical Bond in Glass Formation 95
Contents

2.4.2.5 The Ideal Glass Structure and Intrinsic Disorder 97
2.4.2.6 The Structure of Multicomponent Glass-Forming Systems 101
2.4.2.7 Possible Criteria for a Structural Interpretation of Phase Separation 103
2.4.3 Correlations Between Structure and Properties 104
2.4.3.1 Relationship Between Structure and Molar Volume 104
2.4.3.2 Relationship Between Structure and Viscosity 107
2.4.3.3 Relationship Between Structure and Thermal Expansion Coefficient 110
2.4.3.4 Relationship Between Structure and Elastic Constants 113
2.4.3.5 Relationship Between Structure and the Glass Transition Temperature 115
2.5 Electronic States in Noncrystalline Solids 117
2.5.1 Band States and Electron Delocalization in Solids 117
2.5.1.1 Essentials of the Band Model 117
2.5.1.2 Limitations of the Band model of Crystalline Solids 120
The Mott Transition 120
The Joffe and Regel Criterion 122
The Anderson Transition 122
Polaron States 124
2.5.1.3 Band Model of Noncrystalline Solids 125
2.5.2 Intrinsic Disorder and Charged Defect Centres in Noncrystalline Systems 128
2.5.2.1 The Sign of the Effective Electron Correlation Energy as a Criterion Distinguishing Two Classes of Substances 129
2.5.2.2 The Model of Charged Defect Centres 131
2.5.2.3 Covalent and Polar Bonding States in Condensed Chemical Systems and Redox Disproportionation 137
Halogen and Interhalogen Compounds 137
Self-Dissociation Equilibria of Polar Liquids and Systems with Bonding Isomerism 139
Redox Disproportionations 141
References 142

3 Amorphous and Glass-Forming Substances 153
3.1 Noncrystalline States of Elements and Alloys 153
3.1.1 Metallic Glasses 153
3.1.1.1 Various Groups of Metallic Glasses 155
3.1.1.2 Structure of Metallic Glasses 156
3.1.1.3 Properties of Metallic Glasses 160
3.1.2 Amorphous Nonmetallic Elements 161
3.1.2.1 Boron 161
Allotropic Forms 161
Structure 161
Properties 163
3.1.2.2 Carbon 164
Crystalline Forms 164
Amorphous and Vitreous Carbon 166
3.1.2.3 Silicon, Germanium, and Derived Systems 167
Crystalline Forms 167
Contents

Structure of the Melt 167
Amorphous Modifications of Silicon and Germanium 168
The Structure of Amorphous Silicon and Germanium 169
Properties of Amorphous Si and Ge Thin films 173
The Amorphous Systems Si–C Si–Ge, and Ge–Sn 173
Amorphous $A^{III}B^V$ and $A^{III}B^{VI}$ Compounds 174
$A^{II}B^{IV}C^V$ Compounds and Derived Glass-Forming Systems 174

3.1.2.4 Phosphorus 175
Crystalline Forms 175
Amorphous Phosphorus 177

3.1.2.5 Arsenic 178
Crystalline Forms 178
Amorphous Arsenic 178
Structure of Amorphous Arsenic 179
Intrinsic Defects of Amorphous Arsenic 181
Properties of Amorphous Arsenic 182

3.1.2.6 Antimony 183

3.1.3 Glass-Forming Properties of Chalcogens 183

3.1.3.1 Sulphur 184
S–Se Mixtures 184
S–Te Mixtures 185

3.1.3.2 Selenium 185
Crystalline Forms 185
Amorphous Selenium 186
Se Melts 189
Vitreous Selenium 190
Properties of Vitreous Selenium 192

3.1.3.3 Tellurium 192
Te–Se mixtures 194

3.2 Binary Glass-Forming Compounds and Systems 194

3.2.1 Boron Oxide, Boron Chalcogenides, and the Oxides and Chalcogenides of Phosphorus, Arsenic, and Antimony 194

3.2.1.1 Boron Oxide and Boron Chalcogenides 194
Modifications 194
The Structure of B_2O_3 Glass 195
Boron Chalcogenides 197

3.2.1.2 Oxides of Phosphorus, Arsenic, and Antimony 198
Phosphorus Oxides 198
Arsenic (III) Oxide 199
Arsenic (V) Oxide 200
Antimony Oxides 200

3.2.1.3 Phosphorus Sulphides and Phosphorus Selenides 201
P–S and P–Se Compounds 201
P–S and P–Se Glasses 201
Properties of P–S and P–Se Glasses 202
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1.4</td>
<td>Arsenic Sulphides and Glass Formation in the As–S System</td>
<td>Arsenic Sulphides</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arsenic Sulphides</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arsenic Sulphide Glasses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vitreous (\text{As}_2\text{S}_3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amorphous Thin Films of (\text{As}_2\text{S}_3)</td>
</tr>
<tr>
<td>3.2.1.5</td>
<td>Arsenic Selenides and Glass Formation in the As–Se System</td>
<td>Arsenic Selenides</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arsenic Selenides</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arsenic Selenide Glasses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amorphous Thin Films of Arsenic Selenide</td>
</tr>
<tr>
<td>3.2.1.6</td>
<td>(\text{As}_2\text{Te}_3) and Glass Formation in the As–Te System</td>
<td>(\text{As}_2\text{Te}_3) and Glass Formation in the As–Te System</td>
</tr>
<tr>
<td>3.2.1.7</td>
<td>Amorphous Antimony Sulphides and Selenides</td>
<td>Amorphous Antimony Sulphides and Selenides</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Oxides and Chalcogenides of Silicon and Germanium</td>
<td>Oxides and Chalcogenides of Silicon and Germanium</td>
</tr>
<tr>
<td>3.2.2.1</td>
<td>Vitreous Silica and the Amorphous System (\text{SiO}_2-a)</td>
<td>Vitreous Silica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silicon Dioxide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Preparation of Vitreous Silica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Structure of Vitreous Silica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defect Centres in Vitreous Silica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Properties of Vitreous Silica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silicon Oxides with Reduced Oxygen Content</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{Si}_3\text{N}_4)</td>
</tr>
<tr>
<td>3.2.2.2</td>
<td>Silicon Chalcogenides</td>
<td>Silicon Chalcogenides</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crystalline Compounds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glass Formation in the Si–Se System</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glass Formation in the Si–Te System</td>
</tr>
<tr>
<td>3.2.2.3</td>
<td>Germanium Dioxide and Glass Formation in the GeO–GeO(_2) System</td>
<td>Germanium Dioxide and Glass Formation in the GeO–GeO(_2) System</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crystalline Forms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vitreous Ge(_2\text{O}_2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glass Formation in the GeO–GeO(_2) System</td>
</tr>
<tr>
<td>3.2.2.4</td>
<td>Glass Formation in Germanium Sulphides and the Compound (\text{Ge}_2\text{S}_3)</td>
<td>Glass Formation in Germanium Sulphides and the Compound (\text{Ge}_2\text{S}_3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crystalline Germanium Sulphides</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vitreous Ge(_2\text{S}_2) and Glasses of the Ge(_2\text{S}_2)–Sulphur System</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intrinsic Disorder in Ge(_2\text{S}_2) Glass</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ge(_2\text{S}_2)–Ge(_2\text{S}_2) Glasses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{Ge}_2\text{S}_3) as a Vitreous Compound</td>
</tr>
<tr>
<td>3.2.2.5</td>
<td>Glass Formation in Germanium Selenides and the Compound (\text{Ge}_2\text{Se}_3)</td>
<td>Glass Formation in Germanium Selenides and the Compound (\text{Ge}_2\text{Se}_3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crystalline Germanium Selenides</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vitreous Ge(_2\text{Se}_2) and Glass Formation in the Ge–Se System</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Properties of Ge–Se Glasses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ge(_2\text{Se}_2)–Ge(_2\text{Se}_2) Glasses and the Compound Ge(_2\text{Se}_3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amorphous Thin Films of Germanium Selenide</td>
</tr>
<tr>
<td>3.2.2.6</td>
<td>Glass Formation in the Ge–Te System and the Compounds (\text{GeTe}_4) and (\text{GeTe}_2)</td>
<td>Glass Formation in the Ge–Te System and the Compounds (\text{GeTe}_4) and (\text{GeTe}_2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crystalline Ge(_2\text{Te}) and Phase Diagrams</td>
</tr>
</tbody>
</table>
Contents

Ge–Te Glasses and Amorphous Thin Films 236
The Metastable Compounds GeTe₄ and GeTe₂ 238

3.2.3 Glass-Forming Binary Fluorides 240
3.2.3.1 Beryllium Fluoride 240
3.2.3.2 Glasses Based on ZrF₄ 241
3.2.3.3 Fluorophosphate Glasses 241
3.2.4 Binary Noncrystalline Compounds 241
3.2.4.1 Glass-Forming Compounds and the Structure of the Melt 241
3.2.4.2 Amorphous Compounds 243

3.3 Ternary Glass-Forming Chalcogenide Systems 244
3.3.1 Oxide Chalcogenide Glasses 244
3.3.2 Chalcogenide Glasses Containing Halogens 245
3.3.2.1 As–Te–I and Ge–Te Glasses 245
3.3.2.2 SbSI 246
3.3.3 Ternary Chalcogenide Glasses with Two Different Chalcogen Components 246
3.3.3.1 Glass Formation and Properties in the As–S–Te and As–Se–Te Systems 247
Glass Formation Ranges 247
Structure of the Glasses 247
Properties 249
3.3.3.2 Glass Formation and Properties of the Ge–S–Se, Ge–S–Te, and Ge–Se–Te Systems 250
Ge–S–Se Glasses 250
Ge–S–Te Glasses 250
Ge–Se–Te Glasses 251
3.3.4 Ternary Chalcogenide Glasses with Two Different Elements from the 4th and 5th Main Groups 252
3.3.4.1 P–As–S and P–As–Se Glasses 252
3.3.4.2 P–Sb–Se Glasses 254
3.3.4.3 As–Sb–S and As–Sb–Se Glasses 254
3.3.4.4 Glasses in the Si–Ge–Te system 254
3.3.5 Ternary Chalcogenide Glasses with One Element Each from the 4th, 5th, and 6th Main Groups 254
3.3.5.1 Glass Formation in the Ge–P–S and Ge–P–Se Systems 255
3.3.5.2 Glass-Forming Behaviour and Properties of the Ge–As–S and G–As–Se Systems 257
Glass Formation Ranges 257
Structure of the Glasses 258
Properties of the Glasses and Melts 260
3.3.5.3 Glass-Forming Behaviour and Properties of the Ge–Sb–S and Ge–Sb–Se Systems 261
Glass-Forming Ranges and Structure 261
Properties of the Glasses 264
3.3.5.4 Ge–P–Te and Ge–As–Te Glasses 265
3.3.5.5 Si–P–Te and Si–As–Te Glasses 267
3.3.6 Ternary Chalcogenide Glasses with Metal Chalcogenides as Network Modifiers 268
3.3.6.1 Sodium Thiogermanate and Thioarsenate Glasses 268
3.3.6.2 Chalcogenide Glasses Containing Cu and Ag 269
3.3.6.3 Chalcogenide Glasses Containing Tl and Ge 270
The Tl–S, Tl–Se, and Tl–Te Systems 270
Tl₂S–GeS–GeS₂ and Tl₂Se–GeSe–GeSe₂ Glasses 270
Glass Formation in the Systems Tl–As–S, Tl–As–Se, and Tl–As–Te 270
The Ga–Ge–S and Ga–Ge–Se Systems 271
3.3.6.4 Germanium Chalcogenide Glasses Containing Sn and Pb 272
3.3.6.5 Hg-Containing Germanium Chalcogenide Glasses 276
3.3.7 Some Quaternary Glass-Forming Chalcogenide Systems 279
3.3.7.1 Glass-Forming Behaviour and Properties in the Systems Ge–Sn–Se–Te 281
and Ge–Pb–Se–Te 282
3.3.7.2 Hg–Se–Se–Te Glasses 283
3.3.7.3 As–Ge–Si–Te Glasses 284
References 284
4 Electrical Conductivity and Optical Properties of Glasses and Amorphous Solids 303
4.1 Transport of Electrical Charges in Noncrystalline Solids 304
4.1.1 Ion-Conducting Glasses 307
4.1.1.1 DC Ionic Conduction 309
Glasses as Solid Electrolytes 311
4.1.1.2 AC Ionic Conduction 313
4.1.1.3 The Alkali Mixed Metal Effect, and the Mobile Mixed Ion Effect 314
4.1.1.4 Glasses with Extremely High Resistance 316
4.1.2 Electron-Conducting Oxide Glasses 317
4.1.2.1 The Charge Transport Mechanism 321
4.1.2.2 Conductivity of Oxide Glasses with Similar Structures 324
4.1.3 Electronic Conduction in Glasses and Amorphous Solids with Bonds of Low Polarity 328
4.1.3.1 Charge Transport Properties of Chalcogenide Glasses 331
DC Conductivity 331
The Seebeck Effect 333
The Hall Effect 335
4.1.3.2 Conducting Properties of Amorphous Silicon and Germanium and Allied Systems 336
4.1.3.3 AC Conduction 339
4.1.3.4 Drift Mobility 341
4.1.3.5 Effects of Foreign Additives on Electrical Conductivity 344
Modification of Chalcogenide Glasses 344
Modification of Amorphous Chalcogenide Films 349
Doping of Amorphous Silicon and Germanium 349
Multilayers of Amorphous Semiconductors 351
4.1.3.6 Dependence of the Electrical Conductivity on Field Strength 352
Variation of Mobility with Field Strength 353
Space-Charge-Limited Conduction 353
Poole-Frenkel Effect for Isolated Coulomb Centres 354
XX Contents

Poole-Frenkel Effect for Screened Coulomb Centres 356
The Poole-Frenkel Effect in the Charged Defect Centres Model 357
4.1.3.7 Switching Effects 358
Switches with Memory Effect 359
Threshold Switches 360
4.1.4 Photoconductivity 363
4.2 Optical Properties 369
4.2.1 Absorption and Transmission 370
4.2.1.1 Multiphonon Absorption 372
4.2.1.2 Effects of Foreign Impurities on the Transmission; Techniques of Pure Preparation of Glasses 373
4.2.1.3 Electronic Absorption Spectrum 376
4.2.1.4 The Absorption Edge 379
The Optical Band Gap 379
Urbach's Rule and the Temperature Dependence of the Absorption Edge 381
The Shape of the Absorption Edge at Small Values of α 383
4.2.2 Photoluminescence 384
4.2.2.1 Luminescence Spectra in the Charged Defect Centres Model 385
4.2.2.2 Photoinduced Non-Equilibrium Occupation of Defect Centres 387
4.2.3 Refractive Index and Dispersion 387
4.2.3.1 Normal and Anomalous Partial Dispersion 391
4.2.3.2 Stress-Induced Birefringence 393
4.2.4 Photoluminescence in Chalcogenide Glasses 396
4.2.4.1 Photoinduced Modifications of Absorption Properties and Refractive Indices in Chalcogenide Glasses 396
4.2.4.2 Photocrystallization 398
References 399

5 Some Applications 409
5.1 Utilization of Semiconductor Properties of Certain Glasses and Amorphous Layers 410
5.1.1 Applications of Ion-Conducting Glasses 410
5.1.1.1 Vitreous Solid Electrolytes 410
5.1.1.2 Ion-Selective Electrodes 412
5.1.1.3 Preparation of Wave-Guide Channels by Ion Exchange 413
5.1.2 Applications of Electron-Conducting Oxide Glasses 417
5.1.2.1 Glass Storage Electrode in Image Orthicon Tubes 417
5.1.2.2 Channel Secondary Electron Multipliers 418
5.1.3 Device Applications of Chalcogenide Glasses 418
5.1.3.1 OVONIC Switching Elements 418
5.1.3.2 Xerography 419
5.1.4 Device Applications of Amorphous Silicon Alloys 420
5.1.4.1 Photovoltaic Solar Cells 421
5.1.4.2 Thin Film Transistors 423
5.1.4.3 Displays and Televisions 424
5.1.4.4 Electrophotography 425
Contents

5.1.4.5 Image Sensors 425
5.1.4.6 Amorphous SiHx Coatings 426
5.2 Optical Glasses for IR Transmission 426
5.2.1 Chalcogenide Glasses 427
5.2.2 Halide Glasses 430
5.3 Information Storage Based on Structural Changes of Glasses 431
5.3.1 Storage Based on Photoinduced Structural Changes 431
5.3.2 Storage Based on Photo-Stimulated Diffusion 431
5.3.3 Storage by Photocrystallization 431
References 433
Index 436