Eigenvalues of Matrices

FRANÇOISE CHATELIN
Laboratoire Central de Recherches
Thomson-CSF, France

With exercises by
Mario Ahués
Université de Saint-Etienne, France

and

Françoise Chatelin

Translated with additional material by
Walter Ledermann
University of Sussex, UK

Financial assistance for the translation was given by the French Ministry of Culture

JOHN WILEY & SONS
Chichester • New York • Brisbane • Toronto • Singapore
Contents

Preface xi
Preface to the English Edition xv
Notation xvii

Chapter 1 Supplements from Linear Algebra 1
1.1 Notation and definitions 1
1.2 The canonical angles between two subspaces 5
1.3 Projections 8
1.4 The gap between two subspaces 10
1.5 Convergence of a sequence of subspaces 14
1.6 Reduction of square matrices 18
1.7 Spectral decomposition 27
1.8 Rank and linear independence 31
1.9 Hermitian and normal matrices 32
1.10 Non-negative matrices 33
1.11 Sections and Rayleigh quotients 34
1.12 Sylvester's equation 35
1.13 Regular pencils of matrices 42
1.14 Bibliographical comments 43
Exercises 43

Chapter 2 Elements of Spectral Theory 61
2.1 Revision of some properties of functions of a complex variable 61
2.2 Singularities of the resolvent 63
2.3 The reduced resolvent and the partial inverse 73
2.4 The block-reduced resolvent 76
2.5 Linear perturbations of the matrix A 79
2.6 Analyticity of the resolvent 82
2.7 Analyticity of the spectral projection 84
2.8 The Rellich–Kato expansions 85
2.9 The Rayleigh–Schrödinger expansions 86
2.10 Non-linear equation and Newton's method 89
2.11 Modified methods 92
2.12 The local approximate inverse and the method of residual correction 95
2.13 Bibliographical comments 98
Exercises 98
Chapter 3 Why Compute Eigenvalues? 111
 3.1 Differential equations and difference equations 111
 3.2 Markov chains 114
 3.3 Theory of economics 117
 3.4 Factorial analysis of data 119
 3.5 The dynamics of structures 120
 3.6 Chemistry 122
 3.7 Fredholm's integral equation 124
 3.8 Bibliographical comments 126
 Exercises 126

Chapter 4 Error Analysis 149
 4.1 Revision of the conditioning of a system 149
 4.2 Stability of a spectral problem 150
 4.3 A priori analysis of errors 165
 4.4 A posteriori analysis of errors 170
 4.5 A is almost diagonal 177
 4.6 A is Hermitian 180
 4.7 Bibliographical comments 190
 Exercises 191

Chapter 5 Foundations of Methods for Computing Eigenvalues 205
 5.1 Convergence of a Krylov sequence of subspaces 205
 5.2 The method of subspace iteration 208
 5.3 The power method 213
 5.4 The method of inverse iteration 217
 5.5 The QR algorithm 221
 5.6 Hermitian matrices 226
 5.7 The QZ algorithm 226
 5.8 Newton's method and the Rayleigh quotient iteration 227
 5.9 Modified Newton's method and simultaneous inverse iterations 228
 5.10 Bibliographical comments 235
 Exercises 235

Chapter 6 Numerical Methods for Large Matrices 251
 6.1 The principle of the methods 251
 6.2 The method of subspace iteration revisited 253
 6.3 The Lanczos method 257
 6.4 The block Lanczos method 266
 6.5 The generalized problem $Kx = \lambda Mx$ 270
 6.6 Arnoldi's method 272
 6.7 Oblique projections 279
 6.8 Bibliographical comments 280
 Exercises 281

Chapter 7 Chebyshev's Iterative Methods 293
 7.1 Elements of the theory of uniform approximation for a compact set in C 293
 7.2 Chebyshev polynomials of a real variable 299