Signal Processing
and its Applications

Edited by

N. K. Bose
HRB Systems Professor
Department of Electrical and Computer Engineering
The Pennsylvania State University
University Park, PA, USA

C. R. Rao
Eberly Professor
Center for Multivariate Analysis
Department of Statistics, The Pennsylvania State University
University Park, PA, USA
Table of Contents

Preface v

Contributors xv

Ch. 1. Signal Processing for Linear Instrumental Systems with Noise: A General Theory with Illustrations from Optical Imaging and Light Scattering Problems 1
M. Bertero and E. R. Pike

1. Introduction 1
2. Compact operators and singular systems 4
3. Linear filtering and regularization 9
4. Diffraction-limited imaging 16
5. Recovery of exponential relaxation rates and Laplace transform inversion 25
6. Sampling theorem and resolution limits 31
7. Concluding remarks 43
References 43

Ch. 2. Boundary Implication Results in Parameter Space 47
N. K. Bose

1. Introduction 47
2. Interval polynomials and stability 47
3. Interval rational functions and PR, PC properties 50
4. Transcendental functions characterizing interval delay-differential systems 51
5. Robust frequency response 54
6. Interval multivariate polynomial positivity 54
7. Conclusions 54
References 56

Ch. 3. Sampling of Bandlimited Signals: Fundamental Results and Some Extensions 59
J. L. Brown, Jr.

Introduction 59
1. Notation and general considerations 61
Table of contents

2. Multi-channel sampling 74
3. Prediction from past samples 86
4. Nonuniform sampling 89

References 99

Ch. 4. Localization of Sources in a Sector: Algorithms and Statistical Analysis 103
K. Buckley and X.-L. Xu

1. Source localization in a sector 103
2. The array observation 106
3. Eigenspace spatial-spectrum estimators 107
4. Statistical analysis of eigenspace based location estimators 111
5. Comparison and study of location estimators 115
6. Summary 123

References 123

Ch. 5. The Signal Subspace Direction-of-Arrival Algorithm 127
J. A. Cadzow

1. Introduction 127
2. Snapshot vector model: One incident wavefield 128
3. General snapshot vector model for multiple incident wavefields 132
4. Covariance domain modeling 133
5. Signal subspace DOA estimation 135
6. Parameter reduction by a decoupling operation 137
7. Nonlinear programming solution 140
8. Jacobian matrix determination 142
9. Estimate of the number of incident wavefields 144
10. Initial composite source DOA selection 145
11. Linear arrays with equispaced sensors 148
12. Numerical examples 149
13. Conclusions 156

Acknowledgment 156

References 156

Ch. 6. Digital Differentiators 159
S. C. Dutta Roy and B. Kumar

List of abbreviations and symbols 159
1. Introduction 161
2. IIR digital differentiators 163
3. Differentiators for stochastic processes 166
4. Earlier work on design of FIR differentiators 168
5. FIR digital differentiators 171
Table of contents

6. Differentiators for low frequencies: \(H_s(\omega) \) 172
7. Differentiators for midband frequencies 175
8. Differentiators for high frequencies: \(H_s(\omega) \) 179
9. Variable frequency range differentiators: \(H_m(\omega), H_p(m) \) 182
10. DDs which are maximally linear at spot frequency \(\omega = \pi/p, p \) integer: \(H_p(\omega) \) 184
11. Relationships between digital differentiators and other filters 187
12. Second and higher degree differentiators 193
13. Concluding comments 199
Acknowledgment 201
References 201

Ch. 7. Orthogonal Decompositions of 2D Random Fields and their Applications for 2D Spectral Estimation 207

J. M. Francos

1. Introduction 207
2. Definitions and fundamental properties 208
3. Homogeneous fields 213
4. The concept of multiple total order definitions 216
5. Approximations and applications 220
6. Summary and discussion 226
Acknowledgments 227
References 227

Ch. 8. VLSI in Signal Processing 229

A. Ghouse

Introduction 229

PART 1. DEVELOPMENT OF SPECIAL-PURPOSE PROCESSORS FOR SIGNAL PROCESSING 230

Introduction 230
1.1. Considerations in the design of special-purpose processors 230
1.2. Emergence of the TMS320 family of DSP processors 231
1.3. Advanced special-purpose processors for signal processing 242
1.4. Conclusion 249
References to Part 1 249

PART 2. HARDWARE DESIGN METHODOLOGIES FOR SIGNAL PROCESSING 249

Introduction 249
2.1. Considerations in the hardware realization of a task 249
2.2. Derivation of dedicated hardware structures 251
2.3. Hardware realization of existing signal processing algorithms 251
2.4. Hardware realization of signal processing operations 258
2.5. Conclusion 267
References to Part 2 267
Ch. 9. Constrained Beamforming and Adaptive Algorithms 269

L. C. Godara

List of symbols and acronyms 269
1. Introduction 272

PART 1. CONSTRAINED BEAMFORMING 273
1. Array signal model 273
2. Steering vector representation 275
3. Narrowband beamformer structure 275
4. Conventional processor 276
5. Optimal processor 280
6. Effect of correlation 282
7. Effect of errors 288
8. PIC processor 300
9. Comparison of two processors 318
10. Effect of look direction errors 320

PART 2. CONSTRAINED LMS ALGORITHM 325
11. Standard LMS algorithm 326
12. Perturbation algorithms 332
13. Structured gradient algorithm 341
14. Recursive LMS algorithm 348
15. Improved LMS algorithm 349
References 353

Ch. 10. Bispectral Speckle Interferometry to Reconstruct Extended Objects from Turbulence-Degraded Telescope Images 355

D. M. Goodman, T. W. Lawrence, E. M. Johansson and J. P. Fitch

1. Introduction 355
2. Statistical characterization of the effect of turbulence on astronomical imaging 356
3. Signal processing issues 375
4. Experimental results 383
5. Improved algorithms 394
References 395

Ch. 11. Multi-Dimensional Signal Processing 399

K. Hirano and T. Nomura

1. Introduction 399
2. 2D digital signals and systems 399
3. Analysis of 2D digital systems 422
4. Design of 2D digital systems 437
Table of Contents

Ch. 15. Statistical Algorithms for Noncausal Gauss–Markov Fields 623

J. M. F. Moura and N. Balram

1. Introduction 623
2. Motivation 625
3. Statistical approach: Markov random fields 632
4. Smoothing of 2D fields 654
5. Applications 677
6. Summary 688
 References 689

Ch. 16. Subspace Methods for Directions-of-Arrival Estimation 693

A. Paulraj, B. Ottersten, R. Roy, A. Swindlehurst, G. Xu and T. Kailath

1. Introduction 693
2. The subspace-based data model and applications 694
3. Subspace methods for parameter estimation 702
4. Asymptotic properties 708
5. A performance analysis for model errors 716
6. Fast subspace decomposition (FSD) 723
7. Concluding remarks 735
 References 736

Ch. 17. Closed Form Solution to the Estimates of Directions of Arrival Using Data from an Array of Sensors 741

C. R. Rao and B. Zhou

1. Introduction 741
2. Signal model and basic assumptions 742
3. An eigenstructure-based approach 743
4. A spatial smoothing approach 746
5. A direct approach 747
6. A modified approach 748
7. Conclusions 752
 References 752

Ch. 18. High-Resolution Direction Finding 755

S. V. Schell and W. A. Gardner

1. Introduction 755
2. Possible approaches 757
3. Narrowband sensor arrays 759
4. A high-resolution array-based approach 766
Table of contents

3. Block-Toeplitz matrices 944
4. Split algorithms 948
5. Toeplitz-plus-Hankel matrices 956
6. Close-to-Toeplitz matrices 964
 References 971

Subject Index 973

Contents of Previous Volumes 983