Fundamentals of Dynamical Systems and Bifurcation Theory

Milan Medved

Mathematical Institute of the Slovak Academy of Sciences, Bratislava, Czechoslovakia

ADAM HILGER, BRISTOL, PHILADELPHIA AND NEW YORK
CONTENTS

INTRODUCTION .. vii

1 SELECTED READING ON THE FOUNDATIONS OF ALGEBRA,
TOPOLOGY, MATHEMATICAL ANALYSIS AND THE THEORY
OF DIFFERENTIAL EQUATIONS 1
1.1 Some basic concepts and notation 1
1.2 Relations on a set 2
1.3 Linear, Euclidean and linear normed spaces 3
1.4 Metric spaces 5
1.5 Topological spaces 5
1.6 Matrices .. 9
1.7 Linear mappings 10
1.8 Mathematical analysis 12
1.9 Differential equations 18

2 FOUNDATIONS OF THE THEORY OF DIFFERENTIABLE
MANIFOLDS AND DIFFERENTIABLE MAPPINGS 22
2.1 C^r-manifolds 22
2.2 C^r-mappings 26
2.3 Tangent space to a C^r-manifold 27
2.4 C^r-submanifolds 32
2.5 C^r-manifolds in R^N 35
2.6 Immersion and submersion theorems 36
2.7 Regular and critical values of mappings 39
2.8 Topology on the space of C^r-mappings 41
2.9 Jets ... 45
2.10 Transversality 46
2.11 Stratification of algebraic and semi-algebraic manifolds 55
2.12 Transversality to stratification 61

3 VECTOR FIELDS AND DYNAMICAL SYSTEMS 63
3.1 Vector fields on differentiable manifolds 63
3.2 Limit properties of dynamical systems 75
3.3 Examples of vector fields .. 84
3.4 Generic properties of parameter-dependent matrices 86
3.5 Linear dynamical systems and some notions from the theory of non-linear dynamical systems 103
3.6 Grobman–Hartman Theorem .. 128
3.7 Normal forms of differential equations 143
3.8 Poincaré mapping ... 159

4 INVARIANT MANIFOLDS ... 172
4.1 Stable and unstable manifolds ... 172
4.2 Centre manifolds .. 183

5 GENERIC BIFURCATIONS OF VECTOR FIELDS AND DIFFEOMORPHISMS .. 203
5.1 Ljapunov-Schmidt Method ... 203
5.2 Generic bifurcations of 1-parameter systems of vector fields in neighbourhoods of singular points 214
5.3 Generic bifurcations of 1-parameter systems of diffeomorphisms 238
5.4 Generic bifurcations of 1-parameter systems of vector fields in neighbourhoods of periodic trajectories 258

6 COMPLEMENTARY NOTES ON THE CONTEMPORARY THEORY OF DYNAMICAL SYSTEMS ... 262
6.1 Generic bifurcations of multi-parameter systems of vector fields .. 262
6.2 Global theory of dynamical systems 270
6.3 ŠiŠnikov bifurcation .. 273
6.4 Global Hopf bifurcation ... 276
6.5 Attractors and chaotic sets .. 279

REFERENCES .. 282
SUBJECT INDEX .. 289