Contents

Preface xvii

Chapter 1 Introduction to Chemistry 1

1.1 The Nature of Chemistry 2
1.2 Matter 5
INSIGHTS into CHEMISTRY: Science, Society, and Technology Modern Alloys are Widely Used. Techniques Evolved from the Ancients 13
1.3 The Periodic Table 14
1.4 Separation of Mixtures 19
INSIGHTS into CHEMISTRY: Science, Society, and Technology Gas Chromatography, a Modern Separation Technique 24
1.5 Measurement and Units 24
1.6 Uncertainty in Measurements 34

Chapter 2 Atoms, Molecules, and Ions 49

2.1 Dalton’s Atomic Theory 49
INSIGHTS into CHEMISTRY: Development of Chemistry Dalton’s Atomic Theory Provides Foundation for Chemistry 52
2.2 Structure of Atoms 55
INSIGHTS into CHEMISTRY: Science, Society, and Technology Mass Spectrometers Are Now Used by Scientists to Measure an Isotope’s Mass and Abundance 63
2.3 Ionic Compounds 66
Chapter 3: Stoichiometry I: Equations, the Mole, and Chemical Formulas

3.1 Chemical Equations 81
INSIGHTS into CHEMISTRY: Chemical Reactivity
* Nitric and Sulfuric Acids Are Culprits in Acid Rain: No Easy Answers 88
3.2 The Mole 91
3.3 Empirical Formulas 98
INSIGHTS into CHEMISTRY: Development of Chemistry
* Richards’s Measurements Cast Doubt About Atomic Weights: New Standards Lead to Nobel Prize 106
3.4 Mass Relationships in Equations 108
3.5 Limiting Reactants 113

Chapter 4: Stoichiometry II: Chemical Reactions in Solution and Thermochemistry

4.1 Solutions and Molarity 123
INSIGHTS into CHEMISTRY: Science, Society, and Technology
* Volumetric Glassware Available in Wide Range of Accuracy and Precision 128
4.2 Solution Stoichiometry 130
4.3 Chemical Analysis by Titration and Precipitation 138
INSIGHTS into CHEMISTRY: Chemical Reactivity
* Mysterious Liquid in Vials from Civil War Easily Identified by Precipitation Reactions 142
4.4 Enthalpy Changes in Chemical Reactions 143
4.5 Calorimetry 148
4.6 Hess’s Law 151

Chapter 5: The Gaseous State

5.1 Properties and Measurements of Gases 166
INSIGHTS into CHEMISTRY: A Closer View
* Plasmas—The Fourth State of Matter 168
5.2 The Ideal Gas Law 169
5.3 The Influences of Changing Conditions on Gases 173
5.4 Calculations Using the Ideal Gas Law 176
5.5 Equation Stoichiometry Involving Gases 179
5.6 Dalton's Law of Partial Pressure 182
5.7 Kinetic Molecular Theory of Gases 186
5.8 Diffusion and Effusion 189
5.9 Real Gases 192

Chapter 6 Electrons in Atoms 201

6.1 The Nature of Light 201
INSIGHTS into CHEMISTRY: A Closer View
Radiation Emitted by Heated Solids; Planck Solves “UV Catastrophe” 204
6.2 Line Spectra and the Bohr Atom 208
INSIGHTS into CHEMISTRY: Development of Chemistry
Scientists Predicted Hydrogen Spectrum; Modern Detectors Allow Its Observation 210
6.3 Matter as Waves 212
INSIGHTS into CHEMISTRY: A Closer View
Heisenberg’s Uncertainty Principle Limits Bohr’s Atomic Model 213
6.4 Quantum Numbers in the Hydrogen Atom 215
6.5 Energy Levels for Multi-Electron Atoms 221
6.6 Electrons in Multi-Electron Atoms 224
INSIGHTS into CHEMISTRY: A Closer View
Simple Methods to Help Remember Relative Energies of Sublevels 225
INSIGHTS into CHEMISTRY: A Closer View
Chemists Are Interested in Magnetism to Study Spin Quantum Numbers of Electrons 229

Chapter 7 Periodic Trends of the Elements 237

7.1 Electronic Structure and the Periodic Table 237
7.2 Sizes of Atoms and Ions 246
INSIGHTS into CHEMISTRY: A Closer View
The Lanthanide Contraction Interrupts the Periodic Table’s Orderly Progression 252
7.3 Ionization Energy 254
7.4 Electron Affinity 259
7.5 Trends in the Chemistry of Elements in Groups IA, IIA, and VIIA 261

INSIGHTS into CHEMISTRY: Chemical Reactivity
Blood Sodium and Potassium Levels are Critical; Analyses Help Doctors Diagnose Patients 263

Chapter 8 Chemical Bonds 273

8.1 Lewis Symbols 273
8.2 Ionic Bonding 274
8.3 Covalent Bonding 278
8.4 Electronegativity 286

INSIGHTS into CHEMISTRY: Development of Chemistry
Linus Pauling: Two Nobel Prizes for Work in Chemical Bonding and Nuclear Disarmament 290

8.5 Formal Charges in Lewis Structures 290
8.6 Resonance in Lewis Structures 294
8.7 Molecules That Do Not Satisfy the Octet Rule 298
8.8 Bond Energies 303

Chapter 9 Molecular Structure and Bonding Theories 313

9.1 Valence-Shell Electron-Pair Repulsion Model 313
9.2 Polarity of Molecules 323
9.3 Valence Bond Theory 328

INSIGHTS into CHEMISTRY: A Closer View
Experimental Bond Angles Explained by Hybridization Theory 338

9.4 Multiple Bonds 338
9.5 Molecular Orbitals: Homonuclear Diatomic Molecules 347
9.6 Heteronuclear Diatomic Molecules and Delocalized Molecular Orbitals 355

INSIGHTS into CHEMISTRY: A Closer View
Atomic Orbitals Overlap to Form Delocalized Molecular Orbitals 356

Chapter 10 Liquids and Solids 369

10.1 Intermolecular Attractions 370
10.2 Properties of Liquids 377
10.3 The Solid State 379
10.4 X-Ray Diffraction 389
10.5 Phase Changes 391
INSIGHTS into CHEMISTRY: Science, Society, and Technology Beyond the Critical Point: Supercritical Fluids 395
10.6 Phase Diagrams 398
INSIGHTS into CHEMISTRY: Science, Society, and Technology High Temperature and Pressure Turn Black Graphite into Sparkling Diamonds 403

Chapter 11 Solutions 411

11.1 Solution Concentration 411
11.2 Principles of Solubility 417
11.3 Effect of Temperature and Pressure on Solubility 424
11.4 Colligative Properties of Solutions 427
INSIGHTS into CHEMISTRY: A Closer View Vapor Phase Osmometry Measures Solutes. A Single Drop Yields Useful Information 434
INSIGHTS into CHEMISTRY: Science, Society, and Technology Colligative Properties Find Application: Reverse Osmosis Desalinizes Sea Water 437
11.5 Colligative Properties of Electrolyte Solutions 437
11.6 Mixtures of Volatile Substances 439
INSIGHTS into CHEMISTRY: A Closer Look Chemical Antifreeze: Surviving the Winter 442

Chapter 12 Chemical Equilibrium 451

12.1 The Equilibrium Constant 452
INSIGHTS into CHEMISTRY: A Closer View Conversion Between Pressure and Concentration: Origin Lies in the Ideal Gas Law 458
12.2 The Reaction Quotient 458
INSIGHTS into CHEMISTRY: Science, Technology, and Society Nitrogen Oxides May Help Form Smog. Solutions to Problems Are Not Clear 461
12.3 The Principle of Le Chatelier 464
Chapter 13 Solutions of Acids and Bases 501

INSIGHTS into CHEMISTRY: Development of Chemistry Tasting Lab Chemicals Was once Routine. Now This Dangerous Practice is Obsolete 502
13.1 Brønsted-Lowry Acid-Base Systems 502
13.2 Autoionization of Water 505
13.3 Strong Acids and Bases 511
INSIGHTS into CHEMISTRY: Chemical Reactivity Hydrofluoric Acid Considered a Weak Acid, Yet Is Highly Reactive—Can Dissolve Glass 512
INSIGHTS into CHEMISTRY: Chemical Reactivity Group IA and Soluble IIA Hydroxides Are Strong Bases 514
13.4 Weak Acids and Bases: Qualitative Aspects 515
13.5 Weak Acids and Bases: Quantitative Aspects 517
INSIGHTS into CHEMISTRY: Chemical Reactivity Picric Acid is Unstable; It Can Corrode Storage Bottles and Then Explode 519
13.6 Solutions of Weak Bases and Salts 526
INSIGHTS into CHEMISTRY: Chemical Reactivity Ammonia Solutions Cut Through Grease and Rinse Clean—Shouldn't be Mixed with Bleach 529
13.7 Mixtures of Strong and Weak Acids 535
Chapter 14 Reactions Between Acids and Bases 551
14.1 Titrations of Strong Acids and Bases 551
14.2 Buffers 562
INSIGHTS into CHEMISTRY: Chemical Reactivity
Blood as an Effective Buffer System, Neutralizing Excess Acids or Bases 568
14.3 The Titration of Weak Acids or Bases 569
14.4 Indicators 577
14.5 Polyprotic Acids 580
14.6 Amphoteric Species 584
14.7 Factors That Influence Solubility 585

Chapter 15 Chemical Thermodynamics 595
15.1 Work and Heat 596
INSIGHTS into CHEMISTRY: A Closer View
Work is Performed as a Gas Expands Against External Pressure 598
15.2 The First Law of Thermodynamics 600
15.3 Entropy 608
15.4 Free Energy 615
INSIGHTS into CHEMISTRY: Science, Society, and Technology Nitromethane, A High-Energy Race Car Fuel, Emits Too Many Pollutants for General Use 618
15.5 Concentration, Free Energy, and the Equilibrium Constant 623
INSIGHTS into CHEMISTRY: Science, Society, and Technology Phase Changes of Glauber's Salt Can Be Used to Heat Your Home 624
INSIGHTS into CHEMISTRY: A Closer View
Free Energy Changes Are Influenced by Changes in Pressure and Concentration 629
INSIGHTS into CHEMISTRY: Development of Chemistry Trouton's Law States Constant
Chapter 18 Metallurgy, Transition Metals, and Coordination Chemistry 777

18.1 Metallurgy 778
18.2 Properties of the Transition Elements 784
18.3 Chemistry of Selected Transition Elements 789

Chapter 19 The Chemistry of Hydrogen, Elements in Groups IIIA Through VIA, and the Noble Gases 823

19.1 General Trends 823
19.2 Hydrogen 825
19.3 The Chemistry of Group IIIA (13) Elements 827
19.4 The Chemistry of Group IVA (14) Elements 833

19.5 The Chemistry of Group VA (15) Elements 842
19.6 The Chemistry of Group VIA (16) Elements 847
19.7 The Noble Gases 853
Chapter 20 Nuclear Chemistry 861

20.1 Nuclear Stability and Radioactivity 862
20.2 Nuclear Reactions 874
INSIGHTS into CHEMISTRY: A Closer View
Quarks: These Subatomic Particles Hold the Key to Understanding Nuclear Forces 876
20.3 Nuclear Binding Energy 879
20.4 Fission and Fusion 882
20.5 Biological Effects of Radiation 887
INSIGHTS into CHEMISTRY: Science, Society, and Technology Radiopharmaceuticals Zero in on Target Organs and Enable Images that Improve Healthcare Delivery 890

Chapter 21 Organic Chemistry and Biochemistry 899

21.1 Alkanes 900
21.2 Alkenes and Alkynes 909
21.3 Functional Groups 918
INSIGHTS into CHEMISTRY: Science, Society, and Technology Reaction of Dichromate Ion with Alcohol is the Basis for the Breath Alcohol Test 922
INSIGHTS into CHEMISTRY: A Closer View
Soap's Unique Chemical Structure Enables it to Dissolve Oil into Water 927
21.4 Synthetic Organic Polymers 931
21.5 Proteins 935
21.6 Carbohydrates 940
21.7 Nucleic Acids 942

Appendix A Math Procedures A.1
Appendix B Selected Physical Constants A.12
Appendix C Unit Conversion Factors A.13
Appendix D Names of Ions A.16
Appendix E Properties of Water A.18
Appendix F Solubility Products, Acids, and Bases A.19
Appendix G Thermodynamic Constants for Selected Compounds A.24
Appendix H Standard Reduction Potentials at 25 °C A.33