SEMICONDUCTOR LASERS
Second Edition

Govind P. Agrawal
The Institute of Optics, University of Rochester
Rochester, New York

and

Niloy K. Dutta
AT&T Bell Laboratories
Murray Hill, New Jersey

VAN NOSTRAND REINHOLD
New York
CONTENTS

Preface to the First Edition/xiii
Preface to the Second Edition/xv

1. Introduction/1
 1.1 Historical Perspective/1
 1.2 Semiconductor Materials/5
 1.3 Operating Principles/9
 1.3.1 p-n Junction/9
 1.3.2 Dielectric Waveguide/11
 1.3.3 Recombination Mechanisms/12
 1.3.4 Laser Threshold/13
 1.4 Optical Fiber Communications/15
 1.5 Overview/19
 Problems/21
 References/22

2. Basic Concepts/25
 2.1 Introduction/25
 2.2 Maxwell's Equations/26
 2.3 Threshold Condition and Longitudinal Modes/30
 2.4 Gain and Stimulated Emission/35
 2.5 Waveguide Modes/39
 2.5.1 Effective Index Approximation/41
 2.5.2 Transverse Modes/44
 2.5.3 Lateral Modes/49
 2.6 Emission Characteristics/55
 2.6.1 Light-Current Characteristics/55
 2.6.2 Spatial-Mode Characteristics/64
 2.6.3 Spectral Characteristics/67
 2.6.4 Dynamic Characteristics/70
 Problems/70
 References/71
3. Recombination Mechanisms in Semiconductors/74
 3.1 Introduction/74
 3.2 Radiative Recombination/75
 3.2.1 Absorption and Emission Rates for Discrete Levels/78
 3.2.2 Absorption and Emission Rates in Semiconductors/81
 3.2.3 Absorption Coefficient and Optical Gain/88
 3.3 Nonradiative Recombination/98
 3.3.1 Band-to-Band Auger Processes/99
 3.3.2 Phonon-Assisted Auger Processes/112
 3.3.3 Defect and Surface Recombination/119
 3.4 Experimental Results/120
 3.5 Threshold Current Density/126
 3.5.1 Carrier Leakage over the Heterojunctions/127
 3.6 Temperature Dependence of Threshold Current/132
 3.6.1 Carrier-Lifetime Measurements/134
 3.6.2 Optical-Gain Measurements/136
 3.6.3 External Differential Quantum Efficiency/136
 3.6.4 Discussion/139
 Problems/142
 References/143

4. Epitaxy and Material Parameters of InGaAsP/147
 4.1 Introduction/147
 4.2 Liquid-Phase Epitaxy/148
 4.2.1 LPE Apparatus/148
 4.2.2 Growth Methods/150
 4.2.3 LPE of InGaAsP/152
 4.3 Vapor-Phase Epitaxy/156
 4.4 Metal-Organic Vapor-Phase Epitaxy/158
 4.5 Molecular-Beam Epitaxy/159
 4.6 Lattice-Mismatch Effects/162
 4.7 Material Parameters/165
 4.7.1 Band-Structure Parameters/166
 4.7.2 Mobility/170
 4.7.3 Refractive Index/171
 4.8 Strained-Layer Epitaxy/174
 Problems/176
 References/176

5. Laser Structures and Their Performance/180
 5.1 Introduction/180
 5.2 Broad-Area Lasers/181
5.3 Gain-Guided Lasers/185
5.4 Weakly Index-Guided Lasers/196
5.5 Strongly Index-Guided Lasers/201
5.6 Leakage Current/212
5.7 Laser Arrays/218
5.8 Surface-Normal Emitting Lasers/223

Problems/226
References/227

6. Rate Equations and Operating Characteristics/231

6.1 Introduction/231
6.2 Rate Equations/232
6.3 Steady-State Characteristics/238
 6.3.1 Light-Current Curve/239
 6.3.2 Longitudinal-Mode Spectrum/242
6.4 Transient Response/250
 6.4.1 Dynamic Longitudinal-Mode Spectrum/250
 6.4.2 Turn-On Delay/252
 6.4.3 Relaxation Oscillations/255
6.5 Noise Characteristics/258
 6.5.1 Langevin Formulation/259
 6.5.2 Intensity Noise/261
 6.5.3 Phase Noise and Line Width/269
6.6 Modulation Response/275
 6.6.1 Small-Signal Analysis/276
 6.6.2 Intensity Modulation/277
 6.6.3 Frequency Chirping/284
 6.6.4 Large-Signal Modulation/289
 6.6.5 Ultrashort Pulse Generation/293
6.7 External Optical Feedback/297
 6.7.1 Modified Rate Equations/298
 6.7.2 Steady-State Behavior/300
 6.7.3 Dynamic Behavior/304
 6.7.4 Noise Characteristics/306

Problems/309
References/311

7. Distributed-Feedback Semiconductor Lasers/319

7.1 Introduction/319
7.2 DFB Laser Structures/321
7.3 Theory/323
7.3.1 Coupled-Wave Equations/324
7.3.2 Longitudinal Modes and Threshold Gain/329
7.3.3 Coupling Coefficient/336
7.3.4 Threshold Behavior/340
7.3.5 Light-Current Characteristics/344
7.4 Performance/345
7.4.1 CW Operation/346
7.4.2 Modulation Performance/351
7.4.3 Phase-Shifted DFB Lasers/354
7.4.4 Multiquantum-Well DFB Lasers/358
7.4.5 Gain-Coupled DFB Lasers/359
7.5 DBR Lasers/361
7.5.1 Design Issues/361
7.5.2 Theory/362
7.5.3 Emission Characteristics/366
7.6 Tunable Semiconductor Lasers/368
7.7 Transmission Experiments/371
Problems/376
References/378

8. Coupled-Cavity Semiconductor Lasers/385
8.1 Introduction/385
8.2 Coupled-Cavity Schemes/387
8.3 Theory/390
8.3.1 Coupling Constant/391
8.3.2 Longitudinal Modes and Threshold Gain/394
8.3.3 Side-Mode Suppression/398
8.3.4 Modulation Response/399
8.4 Operating Characteristics/401
8.4.1 Longitudinal-Mode Control/403
8.4.2 Optimum Biasing for Direct Modulation/406
8.4.3 Frequency Chirp/408
8.4.4 Transmission Experiments/410
8.4.5 External-Cavity Semiconductor Lasers/413
8.5 Diverse Applications/416
Problems/422
References/423

9. Quantum-Well Semiconductor Lasers/426
9.1 Energy Levels/426
9.2 Density of States/430
9.3 Experimental Observation of Confined States/432
9.4 Radiative Recombination/434
9.5 Auger Recombination/443
9.6 Single Quantum-Well and Multiquantum-Well Lasers/450
9.7 MQW Laser Results/455
9.8 Modulation and Noise Characteristics/461
9.9 Strained Quantum-Well Lasers/462

Problems/468
References/469

10. Surface-Emitting Lasers/472
10.1 Introduction/472
10.2 Mirror Reflectivity/473
10.3 GaAs-AlGaAs and InGaAs-GaAs Surface-Emitting Lasers/477
10.4 InGaAsP-InP Surface-Emitting Lasers/482
10.5 Laser Arrays/484

Problems/485
References/485

11. Optical Amplifiers/487
11.1 Introduction/487
11.2 General Concepts/487

11.2.1 Gain Spectrum and Bandwidth/489
11.2.2 Gain Saturation/490
11.2.3 Amplifier Noise/491
11.2.4 Amplifier Applications/493
11.3 Semiconductor Laser Amplifiers/494

11.3.1 Impact of Facet Reflectivity/496
11.3.2 Amplifier Designs/498
11.3.3 Amplifier Characteristics/504
11.3.4 Multichannel Amplification/508
11.3.5 Pulse Amplification/510
11.3.6 System Applications/517
11.3.7 Multiquantum-Well Amplifiers/519
11.4 Fiber Amplifiers/520

11.4.1 Energy Levels/522
11.4.2 Fiber Amplifier Performance/524

Problems/526
References/527
12. Photonic and Optoelectronic Integrated Circuits/530
 12.1 Introduction/530
 12.2 Photonic Integrated Circuits/530
 12.2.1 Arrays/530
 12.2.2 Integrated Laser Detector/533
 12.2.3 Integrated Laser Modulator/534
 12.2.4 Integrated Laser Amplifier/537
 12.2.5 Heterodyne Receiver/538
 12.3 Optoelectronic Integrated Circuits (OEICs)/539
 12.3.1 Receiver OEICs/539
 12.3.2 Transmitter OEICs/539
 12.3.3 Regenerator OEICs/542
 12.3.4 Logic OEICs/543
 References/546

13. Infrared and Visible Semiconductor Lasers/547
 13.1 Lead-Salt Lasers/547
 13.2 Materials and Physical Properties/547
 13.3 Band Structure/550
 13.4 Optical Gain/554
 13.5 Auger Recombination/556
 13.6 Laser Diode Fabrication/561
 13.7 Laser Properties/563
 13.8 Tuning Characteristics/570
 13.9 Other Material Systems/573
 13.9.1 Infrared Semiconductor Lasers/573
 13.9.2 Visible Semiconductor Lasers/574
 Problems/578
 References/579

14. Degradation and Reliability/583
 14.1 Introduction/583
 14.2 Defect Formation in the Active Region/584
 14.2.1 Experimental Techniques/585
 14.2.2 Electroluminescence/585
 14.2.3 Photoluminescence/587
 14.2.4 Cathodoluminescence/589
 14.2.5 Dark Defects under Accelerated Aging/591
 14.3 Catastrophic Degradation/593
 14.4 Degradation of Current-Confining Junctions/595
14.5 Reliability Assurance/596
 14.5.1 Stress Aging/597
 14.5.2 Activation Energy/598
14.6 DFB Laser Reliability/603
 Problems/605
 References/605

Index/607