Contents

PART 1
Fundamentals of Discrete Mathematics 1

1 Fundamental Principles of Counting 3
 1.1 The Rules of Sum and Product 3
 1.2 Permutations 6
 1.3 Combinations: The Binomial Theorem 19
 1.4 Combinations with Repetition: Distributions 33
 1.5 An Application in the Physical Sciences (Optional) 43
 1.6 Summary and Historical Review 44

2 Fundamentals of Logic 51
 2.1 Basic Connectives and Truth Tables 51
 2.2 Logical Equivalence: The Laws of Logic 61
 2.3 Logical Implication: Rules of Inference 77
 2.4 The Use of Quantifiers 98
 2.5 Quantifiers, Definitions, and the Proofs of Theorems 121
 2.6 Summary and Historical Review 137

3 Set Theory 143
 3.1 Sets and Subsets 143
 3.2 Set Operations and the Laws of Set Theory 156
 3.3 Counting and Venn Diagrams 169
 3.4 A Word of Probability 172
 3.5 Summary and Historical Review 176

4 Properties of the Integers: Mathematical Induction 183
 4.1 The Well-Ordering Principle: Mathematical Induction 183
 4.2 Recursive Definitions 201
 4.3 The Division Algorithm: Prime Numbers 213
 4.4 The Greatest Common Divisor: The Euclidean Algorithm 225
 4.5 The Fundamental Theorem of Arithmetic 232
 4.6 Summary and Historical Review 238
5 Relations and Functions 245
5.1 Cartesian Products and Relations 246
5.2 Functions: Plain and One-To-One 251
5.3 Onto Functions: Stirling Numbers of the Second Kind 260
5.4 Special Functions 267
5.5 The Pigeonhole Principle 275
5.6 Function Composition and Inverse Functions 280
5.7 Computational Complexity 293
5.8 Analysis of Algorithms 297
5.9 Summary and Historical Review 308

6 Languages: Finite State Machines 315
6.1 Language: The Set Theory of Strings 316
6.2 Finite State Machines: A First Encounter 327
6.3 Finite State Machines: A Second Encounter 335
6.4 Summary and Historical Review 343

7 Relations: The Second Time Around 349
7.1 Relations Revisited: Properties of Relations 349
7.2 Computer Recognition: Zero-One Matrices and Directed Graphs 357
7.3 Partial Orders: Hasse Diagrams 371
7.4 Equivalence Relations and Partitions 382
7.5 Finite State Machines: The Minimization Process 388
7.6 Summary and Historical Review 394

PART 2
Further Topics in Enumeration 401

8 The Principle of Inclusion and Exclusion 403
8.1 The Principle of Inclusion and Exclusion 403
8.2 Generalizations of the Principle 413
8.3 Derangements: Nothing Is in Its Right Place 418
8.4 Rook Polynomials 420
8.5 Arrangements with Forbidden Positions 424
8.6 Summary and Historical Review 428

9 Generating Functions 433
9.1 Introductory Examples 433
9.2 Definition and Examples: Calculational Techniques 436
9.3 Partitions of Integers 445
9.4 The Exponential Generating Function 449
9.5 The Summation Operator 454
9.6 Summary and Historical Review 456
10 Recurrence Relations 461

10.1 The First-Order Linear Recurrence Relation 461
10.2 The Second-Order Linear Homogeneous Recurrence Relation with Constant Coefficients 471
10.3 The Nonhomogeneous Recurrence Relation 482
10.4 The Method of Generating Functions 493
10.5 A Special Kind of Nonlinear Recurrence Relation (Optional) 499
10.6 Divide-and-Conquer Algorithms (Optional) 511
10.7 Summary and Historical Review 521

PART 3
Graph Theory and Applications 527

11 An Introduction to Graph Theory 529

11.1 Definitions and Examples 529
11.2 Subgraphs, Complements, and Graph Isomorphism 537
11.3 Vertex Degree: Euler Trails and Circuits 550
11.4 Planar Graphs 560
11.5 Hamilton Paths and Cycles 578
11.6 Graph Coloring and Chromatic Polynomials 588
11.7 Summary and Historical Review 598

12 Trees 607

12.1 Definitions, Properties, and Examples 607
12.2 Rooted Trees 614
12.3 Trees and Sorting 634
12.4 Weighted Trees and Prefix Codes 638
12.5 Biconnected Components and Articulation Points 644
12.6 Summary and Historical Review 650

13 Optimization and Matching 657

13.1 Dijkstra’s Shortest-Path Algorithm 657
13.2 Minimal Spanning Trees: The Algorithms of Kruskal and Prim 665
13.3 Transport Networks: The Max-Flow Min-Cut Theorem 671
13.4 Matching Theory 683
13.5 Summary and Historical Review 694

PART 4
Modern Applied Algebra 699

14 Rings and Modular Arithmetic 701

14.1 The Ring Structure: Definition and Examples 701
14.2 Ring Properties and Substructures 709