Contents

Molecular Beam Epitaxy for the Formation of Nanostructures 1

H Sakaki

1 Introduction 1
2 Abruptness and flatness of interfaces 1
3 Impurities and mobility in doped heterostructures 10
4 Growth of laterally defined structures 14

Lateral Patterning of Nanostructures ... 21

H G Craighead

1 Introduction 21
2 Overview of lithography 22
3 Photon lithography 23
4 Electron beam lithography 24
5 Ion Beams 26
6 Pattern transfer 27
7 Conclusion and Discussion 28

Theory of Electrons in Low-Dimensional Systems 31

F Stern

1 Introduction 31
2 Electron states in low-dimensional systems 33
3 Screening 35
4 Bound states 37
5 Charge transfer 38
6 Transport in heterolayers 41
7 Modelling of confined electrons 46
8 Parabolic potentials 49

Hole Eigenstates in Semiconductor Heterostructures 53

G Bastard

1 Introduction 53
2 Valence bands in low-dimensional systems 54
3 Optical properties 57
4 Quantum wires 58
5 Polarisation effects in quantum wires 60
Theory of Coherent Quantum Transport

A D Stone

1. Introduction ... 65
2. Landauer-Büttiker approach to transport 70
3. Physical consequences of the LB formula 74
4. Impurity-average technique in real space 80
5. Average Green function in SCBA 83
6. Cooperon correlator ... 90
7. Weak localisation magnetoresistance 91
8. Universal conductance fluctuations 94
9. Summary and conclusions ... 98

Is Atomically Precise Lithography Necessary for Nanoelectronics?

G Timp

1. Introduction ... 101
2. Transport in an electron waveguide 102
3. Manipulating an atomic beam with light 120
4. Conclusions ... 125

Semiclassical Motion in Periodic Potentials and Non-local Resistance

P Main

1. Semiclassical motion in periodic potentials 129
2. Non-local resistance ... 137

Double Barrier Resonant Tunnelling Devices With Lateral Gates

L Eaves

1. Introduction ... 149
2. Structure and overall form of $I(V)$ 150
3. Sub-threshold structure in $I(V)$ 150
4. Asymmetry of $I(V)$ at high negative gate bias 156
5. Conclusion ... 159

Mesoscopic Localised Transport

A B Fowler

1. Introduction ... 163
2. Fluctuations in hopping conduction 163
3. Resonant tunnelling .. 168
Charge Quantisation Effects in Small Tunnel Junctions

L J Geerligs

1. Introduction 171
2. Basic theory 174
3. Effects of the electromagnetic environment 181
4. Devices 185
5. Superconducting junctions 193
6. Semiconductor systems 199

Spectroscopy of Semiconductor Nanostructures

C M Sotomayor Torres

1. Introduction 205
2. Survey of some optical techniques 206
3. Optical assessment of dry etching 208
4. One-dimensional geometrical effects 212
5. Luminescence from free-standing dots 215
6. Luminescence from GaAs-AlGaAs wires 218
7. Models governing the emission yield of nanostructures 220
8. Annealing and overgrowth of nanostructures 222
9. Conclusions 225

Collective and Single-Particle Excitations in Low-Dimensional Systems

D Heitmann

1. Introduction 229
2. Volume and surface plasmons 230
3. Two-dimensional electronic systems 235
4. Two-dimensional plasmons 236
5. Inter-subband resonances in a 2DES 238
6. Systems with modulated charge density 240
7. One-dimensional electronic systems 242
8. One-dimensional plasmons 247
9. Quantum dots 249
10. Summary 253

Experiments on Lateral Superlattices

W Hansen

1. Introduction 257
2. Fabrication of superlattices 258
3. Electron density superlattices 263
4. Quasi-one-dimensional electron channels in tight binding superlattices 273
5. Electrons in quasi-zero-dimensional discs 284
6. Coupled electron discs and antidots 292
7. Summary 297
Selected contributed papers

Optical Properties of Type I and Type II Nanostructures 301
K Brunner, F Hirler, G Abstreiter, G Böhm, G Tränkle, and G Weimann

Planar Coupled Electron Waveguides 309
C C Eugster and J A del Alamo

Fabrication of Three-Dimensional Superlattices of Nanostructures 317
V Bogomolov, Y Kumzerov, and S Romanov

Titles of contributed papers .. 323

List of participants .. 327

Index ... 333