CONTENTS

List of symbols xi

1 MANUFACTURE OF MAGNETIC FLUIDS 1

1.1 Composition of magnetic fluids 1
 1.1.1 Interaction between magnetic fluid components 2
 1.1.2 The simplest model of a stable magnetic fluid 6

1.2 Manufacture of magnetic fluids with different ferrophases 7
 1.2.1 Grinding methods 7
 1.2.2 Condensation methods 10
 1.2.3 Precipitation method 13

1.3 Manufacture of different base magnetic fluids 14
 1.3.1 Light hydrocarbons 14
 1.3.2 Petroleum oils 16
 1.3.3 Silicon fluids 17
 1.3.4 Perfluorinated base 18
 1.3.5 Water base 20
 1.3.6 Liquid metals 22

2 PHYSICAL PROPERTIES OF MAGNETIC FLUIDS 25

2.1 Equilibrium particle concentration in a ferrocolloid 25

2.2 Magnetization of magnetic fluids 26
 2.2.1 Magnetization in an external field 26
 2.2.2 Temperature dependence of magnetization 30
 2.2.3 Magnetization of concentrated magnetic fluids 33
 2.2.4 Kinetics of ferrocolloid magnetization 35

2.3 Density of magnetic fluids 38

2.4 Viscosity of magnetic fluids 39
 2.4.1 Ferrocolloid viscosity with no external magnetic field 39
 2.4.2 Magnetic field effect on ferrocolloid viscosity 42
 2.4.3 Ferrocolloid viscosity versus temperature 44

2.5 Validity of the non-interacting particles model for actual fluids 46

2.6 Heat conduction and heat capacity 48

2.7 Electrical characteristics of magnetic fluids 50

2.8 Acoustic characteristics 52

2.9 Optical properties 55

2.10 Forecast of magnetic fluids properties 55

2.11 Physical properties of the main components of magnetic fluids 57
 2.11.1 Magnetite 57
CONTENTS

2.11.2 Oleic acid 58
2.11.3 Kerosene 59
2.11.4 Oils 59

3 DYNAMICS OF MAGNETIC FLUIDS IN GRAVITATIONAL, THERMAL, AND MAGNETIC FIELDS 60

3.1 Equations of motion and boundary conditions 60
 3.1.1 Thermodynamic relations 61
 3.1.2 Stress tensor in a magnetic fluid 61
 3.1.3 Closed system of equations 62
 3.1.4 Boundary conditions; magnetic pressure jump 65

3.2 Hydrostatics 69
 3.2.1 Pressure distribution; flotation condition for bodies 70
 3.2.2 Equilibrium shape of the magnetic fluid surface at rest 76

3.3 Phenomena in non-isothermal magnetic fluids 83
 3.3.1 Mechanism of thermomagnetic convection 83
 3.3.2 Thermomagnetic convection in non-inductive approximation 85
 3.3.3 Thermoconvective instability 91

3.4 Interfacial phenomena 94
 3.4.1 Film flows 95
 3.4.2 Surface instability 96
 3.4.2.1 Instability of plane layers 100
 3.4.2.1.1 Thick magnetic fluid layer 100
 3.4.2.1.2 Finite-thickness layer 101
 3.4.2.1.3 Layer with two free surfaces 102
 3.4.2.1.4 Dynamics of development of thin layer instability 102
 3.4.2.1.5 Stability in a tangential magnetic field 104
 3.4.2.1.6 Stability under non-uniform heating conditions 104
 3.4.2.1.7 Stability of layers with relative motion 105
 3.4.2.1.8 Magnetic field non-uniformity effect on stability 107
 3.4.2.1.9 Viscous fluid film-flow stability 107
 3.4.2.2 Capillary disintegration of magnetic fluid jets 108
 3.4.2.2.1 Non-uniform field effect 110
 3.4.2.2.2 Axial gas flow effect 111
 3.4.2.2.3 Axial field effect 112
 3.4.2.3 Stability and destruction of equilibrium magnetic fluid forms in a uniform magnetic field 113
 3.4.2.3.1 Topological instability 113
 3.4.2.3.2 Magnetostatic instabilities in plane layers 115

3.4.3 Resonance phenomena on the magnetic fluid surface 118

3.5 Specific features in the dynamics of non-equilibrium magnetization magnetic fluids 121
3.5.1 Non-equilibrium magnetization problems and their statement 121
3.5.2 Hydrodynamic effects of non-equilibrium magnetization 124
3.5.2.1 Magnetoviscous effect 124
3.5.2.2 Rotational convection 125
3.5.2.3 Stability of a free surface in a rotating magnetic field 126

4 MAGNETIC FLUIDS IN CHEMICAL ENGINEERING 128

4.1 Seals of shafts and rods 128
4.1.1 A study of magnetofluid seals 128
4.1.2 Design of the magnetic system of seals 130
4.1.3 Static seals 134
4.1.4 Low-speed seals 137
4.1.5 High-speed seals 142
4.1.6 Combined seals 152
4.1.7 Sealing of reciprocating shafts 154

4.2 Magnetofluid lubricants 156
4.2.1 Magnetic fluid as a lubricant 156
4.2.2 Lubrication systems 159

4.3 Supports, bearings, dampers, and shock-absorbers 164
4.3.1 Supports 164
4.3.2 Bearings 166
4.3.3 Dampers 167
4.3.4 Shock absorbers 168

5 MAGNETIC FLUIDS AS APPLIED TO TECHNOLOGICAL PROCESSES 171

5.1 Magnetohydrostatic separation of ores 171
5.2 Drag reduction and flow separation control 176
5.2.1 Cylinder in a cross flow 177
5.2.1.1 Cylinder with non-deformable coating 177
5.2.1.2 Deformation of a magnetofluid coating surface 180
5.2.1.3 Experimental studies 182
5.2.2 Resistance reduction of plane channels 187
5.2.2.1 Channel with plane coating 187
5.2.2.2 Sinusoidal interface between magnetic and non-magnetic fluids 189
5.2.2.3 Experimental study 192
5.2.3 Resistance reduction of pipelines 194
5.2.3.1 Formation of a magnetofluid coating 194
5.2.3.2 Magnetofluid coating stability 195
5.2.3.3 Analysis of the model problem 199
5.2.3.4 Experimental study 201
5.3 Heat transfer enhancement 203
 5.3.1 Magnetic fluid as a heat carrier 203
 5.3.1.1 Devices with thermosyphon circulation 203
 5.3.1.2 Loudspeakers 204
 5.3.1.3 Electric motors 204
 5.3.2 Magnetic fluid as a tool to control heat transfer 206
 5.3.2.1 Heat conduction 206
 5.3.2.2 Convective heat transfer 208
5.4 Magnetic fluids in chemical technological processes 210

6 MAGNETIC FLUID-BASED DEVICES AND ARRANGEMENTS 214
6.1 Sensors 214
 6.1.1 Densimeters 214
 6.1.2 Accelerometers 215
 6.1.3 Pressure transducers 215
 6.1.4 Displacement transducers 216
 6.1.5 Slope angle-data transmitters 216
 6.1.6 Difficulties in transmitter operation 217
6.2 Actuating mechanisms 219
 6.2.1 Electromechanical converters 219
 6.2.2 Electrical contacts 219
 6.2.3 Displays 220
 6.2.4 Level detectors 221
6.3 Printers 222
6.4 Acoustic radiators 227

References 229

Citation index 238

Subject index 241