Contents

Preface to Series ix
Preface x
Contributors xii

INTRODUCTION 1

PART I: INFLUENCE OF SURFACE MORPHOLOGY AND MICROSTRUCTURE ON OPTICAL RESPONSE

CHARACTERIZATION OF SURFACE ROUGHNESS
1.1 Introduction 9
1.2 What Surface Roughness Is 10
1.3 How Surface Roughness Affects Optical Measurements 14
1.4 How Surface Roughness and Scattering Are Measured 14
1.5 Characterization of Selected Surfaces 20
1.6 Future Directions 23

CHARACTERIZATION OF THE NEAR-SURFACE REGION USING POLARIZATION-SENSITIVE OPTICAL TECHNIQUES
2.1 Introduction 27
2.2 Ellipsometry 29
 Experimental Implementations of Ellipsometry 29, Analysis of Ellipsometry Data 32
2.3 Microstructural Determinations from Ellipsometry Data 34
 Temperature Dependence of the Optical Properties of Silicon 34, Determination of the Optical Functions of Glasses Using SE 35, Spectroscopic Ellipsometry Studies of SiO₂/Si 37, Spectroscopic Ellipsometry for Complicated Film Structures 38, Time-Resolved Ellipsometry 40, Single-Wavelength Real-Time Monitoring of Film Growth 41, Multiple-Wavelength Real-Time Monitoring of Film Growth 42, Infrared Ellipsometry Studies of Film Growth 44
6.3 Techniques for Modifying or Controlling Film Stress 124
 Effect of Deposition Parameters 124, Effect of Ion-Assisted Deposition 127, Effect of Impurities 127, Effect of Post Deposition Annealing 128

6.4 Stress Measurement Techniques 130
 Substrate Deformation 130, X-Ray Diffraction (XRD) 133, Raman Spectroscopy 134

6.5 Future Directions 136

SURFACE MODIFICATION OF OPTICAL MATERIALS

7.1 Introduction 141

7.2 Fundamental Processes 142
 Ion–Solid Interactions 142, Defect Production, Rearrangement, and Retention 143

7.3 Ion Implantation of Some Optical Materials 145
 Glasses and Amorphous Silica 145, α-Quartz (SiO₂) 147, Halides 148, Sapphire (α-Al₂O₃) 149, LiNbO₃ 152, Preparation of Optical Components by Ion Implantation 153

LASER-INDUCED DAMAGE TO OPTICAL MATERIALS

8.1 Introduction 157

8.2 Laser Damage Definition and Statistics 158
 Defining Damage 158, Collecting Damage Statistical Data 159, Types of Damage Probability Distributions 160, Identification of Pre-Damage Sites 160, Changing the Damage Threshold 161

8.3 In Situ Diagnostics 165
 Photothermal Techniques 165, Particle Emission 168

8.4 Postmortem Diagnostics 170
 Surface Charge State 170, Surface Phase and Structure Analysis 171

8.5 Future Directions 174

APPENDIX: TECHNIQUE SUMMARIES

1 Auger Electron Spectroscopy (AES) 181
2 Cathodoluminescence (CL) 182
3 Electron Energy-Loss Spectroscopy in the Transmission Electron Microscope (EELS) 183
4 Energy-Dispersive X-Ray Spectroscopy (EDS) 184
5 Fourier Transform Infrared Spectroscopy (FTIR) 185
6 Light Microscopy 186