Contents

Notation xi

1. The Theoretical Basis
 1. The mass action law 1
 2. Thermodynamic functions 3
 A. The equilibrium constant and thermodynamic functions 3
 B. Heat content and enthalpy of formation 4
 C. Temperature dependence of the enthalpy of reaction 8
 D. Entropy 13
 E. Gibbs energy 17
 3. Solutions 27
 A. Partial molar Gibbs energy 27
 B. Vapour pressures and partial Gibbs energies 30
 C. The calculation of integral values from partial molar thermochemical data 34
 D. Dilute solutions 44
 1. Raoult's law 44
 2. Henry's law 45
 E. Atomistics and solution thermodynamics 47
 F. Regular solutions 50
 1. Calculation of activities using equilibrium diagrams 50
 2. Spinodal decomposition 51
 3. Order–disorder transformation 53
 G. Non-regular solutions 53
 H. Ternary solutions 56

2. Experimental Methods
 1. Calorimetric methods 65
 A. Measurement of temperature 66
 1. Mercury-in-glass thermometers 67
 2. Platinum resistance thermometers 67
 3. Thermocouples 68
 4. Thermistors 68
 5. Optical pyrometers 68
 B. Determination of water equivalent 68
 1. Heat contents and heat capacities 70
 2. Enthalpies of fusion and transformation 79
 3. Enthalpies of reaction and formation 83
 2. Equilibria with a gaseous phase 95
 The equilibrium constant for vaporisation reactions 96
 A. Static methods for the measurement of vapour pressure 97
Contents

1. Manometric methods 97
2. Static methods using radiation 98

B. Gas-condensed phase equilibria in a closed system 100
1. The dew-point method 100
2. The isopiestic method 100
3. Tensi-eudiometer measurements 102
4. Sievert's method 104

C. Dynamic vapour pressure methods 106
1. The boiling point method 106
2. The transportation method 108

D. Other heterogeneous equilibria 112
1. Reaction between a gas phase and a condensed phase 113

E. Methods based on rates of evaporation 120
1. The Knudsen effusion method 121
2. The Knudsen cell–mass-spectrometer combination 125
3. The Langmuir vaporisation method 133
4. Torsion effusion 136
5. Vapour transpiration 138

3. Electromotive forces 140
A. Liquid electrolytes 143
1. Aqueous solutions 143
2. Molten salt electrolytes 143

B. Solid electrolytes 146
1. Glass electrolyte 146
2. Solid oxide electrolytes 148
3. Other cells 159

3. The Estimation of Thermochemical Data

1. Heat capacities 163
A. Gaseous atoms and molecules 163
B. Solids 164
C. Liquids 167
D. Some average values 168

2. Enthalpies and entropies of transformation, fusion and evaporation 169
A. Evaporation 169
B. Fusion 169

3. Entropy and entropy changes 171
A. Standard entropies 171
1. Solids 171
2. Gases 174
B. Entropies of mixing of non-metallic solution phases 177

4. Enthalpies of formation 179
A. General 180
B. Homologous series 180
C. Empirical relations 182
1. Polyvalent metal oxides 182
2. Metal oxyhalide compounds 182
3. Double salts with the formula MXₙYₚ 183
4. Oxides, carbonates, sulphates, hydroxides and nitrates 184
5. Halides 185

D. Enthalpies of formation of double oxides 185
1. Plots involving the ratio of ionic charge to ionic radius 185
2. Statistical analysis methods 187
3. Le Van's method 187
4. Comparison of data for similar compounds 188
E. Volume change and enthalpy of formation 189
5. Thermodynamic properties of alloys
 A. Calculations using the Wigner-Seitz model of metals 197
 B. Properties of mixing from "Free volume" theory 199

4. Examples of Thermochemical Treatment of Materials Problems

1. Iron and steelmaking 203
 A. Deoxidation of steel 203
 1. Deoxidation with silicon 203
 2. Deoxidation with aluminium 204
 B. The decarburisation of iron–chromium–carbon and iron–silicon–carbon liquid alloys 205
 C. Chill factors 208
 D. "Window" for liquid calcium aluminates in continuous casting 209
 E. Precipitation of carbide and nitride phases from dilute solution in alloy steels 210

2. Non-ferrous metallurgy 212
 A. Aluminothermic type reactions 212
 1. The production of uranium by reduction of its fluoride with calcium and magnesium 212
 2. The production of manganese and chromium by the aluminothermic process 214
 B. The chlorination of metal oxides 215
 C. Refining of lead 216
 1. The removal of zinc from lead 218

3. Stability and production of ceramics 218
 A. The free evaporation of an oxide ceramic in vacuo 218
 B. Metal–refractory interaction 220
 C. Electrochemical cells and the stabilities of ceramics 225
 D. Equilibrium phase relations relevant to the production of oxide superconductor materials 226

4. Chemical vapour deposition (CVD) and physical vapour deposition (PVD) processes 227
 A. CVD of ultra-pure silicon 227
 B. Vapour phase transport of silicon carbide 228
 C. Prediction of metastable phase formation during PVD of mixed coating materials 231

5. Corrosion 231
 A. The oxidation of iron–chromium alloys 231

6. Environmental and energy problems 235
 A. Calculation of hazardous emissions during sintering of ores 235
 B. Incineration of waste in a molten iron bath 237
 C. Thermodynamic conditions for formation of dioxin in waste incineration 239
 D. Energy conservation in waste incineration 241

7. Assessment of standard values 241
 A. A pure stoichiometric substance—silicon monoxide 241
 B. A system exhibiting wide solution ranges—chromium–nickel 247

8. Calculation of metallurgical equilibrium diagrams 253

5. Thermochemical Data 257

Index 361