A Course in Combinatorics

J. H. van Lint
Technical University of Eindhoven

and

R. M. Wilson
California Institute of Technology
CONTENTS

<table>
<thead>
<tr>
<th>Preface</th>
<th>xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Graphs</td>
<td>1</td>
</tr>
<tr>
<td>Terminology of graphs and digraphs, Eulerian circuits, Hamiltonian circuits</td>
<td></td>
</tr>
<tr>
<td>2. Trees</td>
<td>11</td>
</tr>
<tr>
<td>Cayley's theorem, spanning trees and the greedy algorithm</td>
<td></td>
</tr>
<tr>
<td>3. Colorings of graphs and Ramsey's theorem</td>
<td>20</td>
</tr>
<tr>
<td>Brooks' theorem, Ramsey's theorem and Ramsey numbers, the Erdős-Szekeres theorem</td>
<td></td>
</tr>
<tr>
<td>4. Turán's theorem and extremal graphs</td>
<td>29</td>
</tr>
<tr>
<td>Turán's theorem and extremal graph theory</td>
<td></td>
</tr>
<tr>
<td>5. Systems of distinct representatives</td>
<td>35</td>
</tr>
<tr>
<td>Bipartite graphs, P. Hall's condition, SDRs, König's theorem, Birkhoff's theorem</td>
<td></td>
</tr>
<tr>
<td>6. Dilworth's theorem and extremal set theory</td>
<td>42</td>
</tr>
<tr>
<td>Partially ordered sets, Dilworth's theorem, Sperner's theorem, symmetric chains, the Erdős-Ko-Rado theorem</td>
<td></td>
</tr>
<tr>
<td>7. Flows in networks</td>
<td>49</td>
</tr>
<tr>
<td>The Ford-Fulkerson theorem, the integrality theorem, a generalization of Birkhoff's theorem</td>
<td></td>
</tr>
<tr>
<td>8. De Bruijn sequences</td>
<td>56</td>
</tr>
<tr>
<td>The number of De Bruijn sequences</td>
<td></td>
</tr>
</tbody>
</table>
9. The addressing problem for graphs
 Quadratic forms, Winkler’s theorem

10. The principle of inclusion and exclusion; inversion formulae
 Inclusion-exclusion, derangements, Euler indicator, Möbius function, Möbius inversion, Burnside’s lemma, problème des ménages

11. Permanents
 Bounds on permanents, Schrijver’s proof of the Minc conjecture, Fekete’s lemma, permanents of doubly stochastic matrices

12. The Van der Waerden conjecture
 The early results of Marcus and Newman, London’s theorem, Egoritsjev’s proof

13. Elementary counting; Stirling numbers
 Stirling numbers of the first and second kind, Bell numbers, generating functions

14. Recursions and generating functions
 Elementary recurrences, Catalan numbers, counting of trees, Joyal theory, Lagrange inversion

15. Partitions
 The function $p_k(n)$, the partition function, Ferrers diagrams, Euler’s identity, asymptotics, the Jacobi triple product identity, Young tableaux and the hook formula

16. (0,1)-Matrices
 Matrices with given line sums, counting (0,1)-matrices

17. Latin squares
 Orthogonal arrays, conjugates and isomorphism, partial and incomplete Latin squares, counting Latin squares, the Evans conjecture

18. Hadamard matrices, Reed-Muller codes
 Hadamard matrices and conference matrices, recursive constructions, Paley matrices, Williamson’s method, excess of a Hadamard matrix, first order Reed-Muller codes
Contents

19. Designs 187

The Erdős-De Bruijn theorem, Steiner systems, balanced incomplete block designs, Hadamard designs, counting, (higher) incidence matrices, the Wilson-Petrenjuk theorem, symmetric designs, projective planes, derived and residual designs, the Bruck-Ryser-Chowla theorem, constructions of Steiner triple systems, write-once memories

20. Codes and designs 214

Terminology of coding theory, the Hamming bound, the Singleton bound, weight enumerators and MacWilliams' theorem, the Assmus-Mattson theorem, symmetry codes, the Golay codes, codes from projective planes

21. Strongly regular graphs and partial geometries 231

The Bose-Mesner algebra, eigenvalues, the integrality condition, quasisymmetric designs, the Krein condition, the absolute bound, uniqueness theorems, partial geometries, examples

22. Orthogonal Latin squares 250

Pairwise orthogonal Latin squares and nets, Euler's conjecture, the Bose-Parker-Shrikhande theorem, asymptotic existence, orthogonal arrays and transversal designs, difference methods, orthogonal subsquares

23. Projective and combinatorial geometries 269

Projective and affine geometries, duality, Pasch's axiom, Desargues' theorem, combinatorial geometries, geometric lattices, Greene's theorem

24. Gaussian numbers and q-anallogues 291

Chains in the lattice of subspaces, q-analogue of Sperner's theorem, interpretation of the coefficients of the Gaussian polynomials, spreads
25. Lattices and Möbius inversion

The incidence algebra of a poset, the Möbius function, chromatic polynomial of a graph, Weisner’s theorem, complementing permutations of geometric lattices, connected labeled graphs

26. Combinatorial designs and projective geometries

Ares and subplanes in projective planes, blocking sets, quadratic and Hermitian forms, unitals, generalized quadrangles, Möbius planes

27. Difference sets and automorphisms

Automorphisms of symmetric designs, Paley-Todd and Stanton-Sprott difference sets, Singer’s theorem

28. Difference sets and the group ring

The Multiplier Theorem and extensions, homomorphisms and further necessary conditions

29. Codes and symmetric designs

The sequence of codes of a symmetric design, Wilbrink’s theorem

30. Association schemes

Examples, the eigenmatrices and orthogonality relations, formal duality, the distribution vector of a subset, Delsarte’s inequalities, polynomial schemes, perfect codes and tight designs

31. Algebraic graph theory: eigenvalue techniques

Tournaments and the Graham-Pollak theorem, the spectrum of a graph, Hoffman’s theorem, Shannon capacity, applications of interlacing and Perron-Frobenius

32. Graphs: planarity and duality

Deletion and contraction, the chromatic polynomial, Euler’s formula, Whitney duality, matroids

33. Graphs: colorings and embeddings

The Five Color Theorem, embeddings and colorings on arbitrary surfaces, the Heawood conjecture, the Edmonds embedding technique

34. Electrical networks and squared squares

The matrix-tree theorem, the network of a squared rectangle, Kirchhoff’s theorem
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>35. Pólya theory of counting</td>
<td>461</td>
</tr>
<tr>
<td>36. Baranyai’s theorem</td>
<td>475</td>
</tr>
<tr>
<td>Appendix 1. Hints and comments on problems</td>
<td>481</td>
</tr>
<tr>
<td>Appendix 2. Formal power series</td>
<td>506</td>
</tr>
<tr>
<td>Name Index</td>
<td>512</td>
</tr>
<tr>
<td>Subject Index</td>
<td>518</td>
</tr>
</tbody>
</table>