Disordered Materials
Science and Technology
Selected papers by
Stanford R. Ovshinsky

Edited by
David Adler
Late of Massachusetts Institute of Technology
Cambridge, Massachusetts

Brian B. Schwartz
Institute for Amorphous Studies
Bloomfield Hills, Michigan
and Brooklyn College of the City University of New York
Brooklyn, New York

and

Marvin Silver
University of North Carolina
Chapel Hill, North Carolina

Plenum Press • New York and London
INTRODUCTION.. 1
David Adler

PART I: CHEMISTRY AND PHYSICS OF DISORDERED MATERIALS

1. Reversible Electrical Switching Phenomena in Disordered Structures............. 11
S.R. Ovshinsky

2. Simple Band Model for Amorphous Semiconducting Alloys...................... 14
M.H. Cohen, H. Fritzsche and S.R. Ovshinsky

3. Reversible Conductivity Transformations in Chalcogenide Alloy Films........ 17
E.J. Evans, J.H. Helbers and S.R. Ovshinsky

4. Structural Studies of Amorphous Semiconductors...................................... 23
A. Bienenstock, F. Betts and S.R. Ovshinsky

5. Reflectivity Studies of the Te(Ge,As)-based Amorphous Semiconductor in the Conducting and Insulating States.............................. 27
J. Feinleib and S.R. Ovshinsky

6. Analog Models for Information Storage and Transmission in Physiological Systems... 30
S.R. Ovshinsky and I.M. Ovshinsky

7. Rapid Reversible Light-Induced Crystallization of Amorphous Semiconductors........ 34
J. Feinleib, J. deNeufville, C. Moss and S.R. Ovshinsky

8. Three Dimensional Model of Structure and Electronic Properties of Chalcogenide Glasses............................ 38
S.R. Ovshinsky and K. Sapru

9. Localized States in the Gap of Amorphous Semiconductors....................... 41
S.R. Ovshinsky
10. Lone-Pair Relationships and the Origin of Excited States in Amorphous Chalcogenides

S.R. Ovshinsky

11. Chemical Modification of Amorphous Chalcogenides

S.R. Ovshinsky

12. Optical and Electronic Properties of Modified Amorphous Materials

13. Local Structure, Bonding, and Electronic Properties of Covalent Amorphous Semiconductors

S.R. Ovshinsky and D. Adler

14. A New Amorphous Silicon-Based Alloy for Electronic Applications

S.R. Ovshinsky and A. Madan

15. Threshold Switching in Chalcogenide Glass Thin Films

D. Adler, M.S. Shur, M. Silver and S.R. Ovshinsky

A. Madan and S.R. Ovshinsky

17. Electroreflectance and Raman Scattering Investigation of Glow-Discharge Amorphous Si:F:H

R. Tsu, M. Izu, S.R. Ovshinsky and F.H. Pollak

Journal de Physique, Colloque C4, supplement 10, October 1981, C4-269-272.

19. Correlation Between the Superconducting and Normal State Properties of Amorphous Molybdenum-Silicon Alloys

A.S. Edelstein, S.R. Ovshinsky, H. Sadate-Akhavi and J. Wood

20. Superconducting Properties of Amorphous Multilayer Metal-Semiconductor Composites

21. Superconducting Properties of Sputtered Mo-C Films with Columnar Microstructure ... 110
 J. Wood, J.E. Keem, J.T. Chen, A.M. Kadin,
 R.W. Burkhardt and S.R. Ovshinsky
 IEEE Transactions on Magnetics, Vol. MAG-21,
 No. 2, March 1985, 842-845.

22. The Role of Free Radicals in the Formation of Amorphous Thin Films 114
 S.R. Ovshinsky
 Proceedings of the International Ion Engineering Congress-ISIAT'83 & IPAT'83,
 Kyoto, Japan, T. Takagi, ed., September 12-16,

23. Laser-Induced Fluorescence Detection of Reactive Intermediates in Diffusion Flames and in Glow-Discharge Deposition Reactors .. 120
 H.U. Lee, J.P. deNeufville and S.R. Ovshinsky
 Journal of Non-Crystalline Solids,

24. Order Parameters in a-Si Systems .. 122
 R. Tsu, J. Gonzalez-Hernandez, J. Doehler
 and S.R. Ovshinsky
 Solid State Communications, Vol. 46,
 No. 1, 1983, 79-82.

25. Passivation of Dangling Bonds in Amorphous Si and Ge by Gas Adsorption 126
 R. Tsu, D. Martin, J. Gonzalez-Hernandez
 and S.R. Ovshinsky
 Physical Review B, Vol. 35, No. 5,

 J. Bicerano and S.R. Ovshinsky
 Journal of Non-Crystalline Solids,
 Vol. 74, 1985, 75-84.

27. Critical Materials Parameters for the Development of Amorphous Silicon Alloys 136
 S.R. Ovshinsky and D. Adler

28. Low Pressure Microwave Glow Discharge Process for High Deposition Rate Amorphous Silicon Alloy ... 144
 S.J. Hudgens, A.G. Johncock and S.R. Ovshinsky
 Journal of Non-Crystalline Solids,
 Vols. 77 & 78, 1985, 809-812.

29. Basic Anticrystalline Chemical Bonding Configurations and Their Structural and Physical Implications ... 147
 S.R. Ovshinsky
 Journal of Non-Crystalline Solids,

30. Superconductivity at 155 K .. 152
 S.R. Ovshinsky, R.T. Young, D.D. Allred,
 G. DeMaggio, and G.A. Van der Leeden
 Physical Review Letters, Vol. 58,
 No. 24, 15 June 1987, 2579-2581.

31. Superconductivity in Fluorinated Copper Oxide Ceramics .. 155
 S.R. Ovshinsky, R.T. Young, B.S. Chao,
 G. Fournier and D.A. Pawlik
 Review of Solid State Science,

32. A Structural Chemical Model for High T_c Ceramic Superconductors 160
 S.R. Ovshinsky, S.J. Hudgens, R.L. Lintvedt
 and D.B. Rorabacher
 Modern Physics Letters B,
PART II: DEVICE APPLICATIONS

33. Reversible Structural Transformations in Amorphous Semiconductors for Memory and Logic 169
 S.R. Ovshinsky and H. Fritzsche

34. Radiation Hardness of Ovonic Devices 174

35. Reversible High-Speed High-Resolution Imaging in Amorphous Semiconductors 184
 S.R. Ovshinsky and P.H. Klose

36. Reversible Optical Effects in Amorphous Semiconductors 188

37. Imaging in Amorphous Materials by Structural Alteration 192
 S.R. Ovshinsky and P.H. Klose

38. New Thin-Film Tunnel Triode Using Amorphous Semiconductors 195

39. Mechanism of Reversible Optical Storage in Evaporated Amorphous AsSe and Ge0.5As0.5S 198
 J.P. deNeufville, R. Seguin, S.C. Moss and S.R. Ovshinsky

40. Solar Electricity Speeds Down to Earth 203
 S.R. Ovshinsky

41. Amorphous Photovoltaic Cells 206
 S.R. Ovshinsky and A. Madan

42. Metal-Insulator-Semiconductor Solar Cells Using Amorphous Si:F:H Alloys 211

43. Progress in Large Area Photovoltaic Devices Based on Amorphous Silicon Alloys 214
 J.P. deNeufville, M. Izu and S.R. Ovshinsky
<table>
<thead>
<tr>
<th>44.</th>
<th>Amorphous Photovoltaics</th>
<th>218</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D. Adler and S.R. Ovshinsky</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>45.</th>
<th>The Breaking of the Efficiency-Stability-Production Barrier in Amorphous Photovoltaics</th>
<th>227</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S.R. Ovshinsky and J. Yang</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>46.</th>
<th>Amorphous Semiconductors for Microelectronics</th>
<th>232</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S.R. Ovshinsky</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>47.</th>
<th>Effects of Transition-Metal Elements on Tellurium Alloys for Reversible Optical Data Storage</th>
<th>238</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R.T. Young, D. Strand, J. Gonzalez-Hernandez and S.R. Ovshinsky</td>
<td></td>
</tr>
</tbody>
</table>

PART III: REVIEW ARTICLES

<table>
<thead>
<tr>
<th>48.</th>
<th>The Ovshinsky Switch</th>
<th>245</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S.R. Ovshinsky</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>49.</th>
<th>An Introduction to Ovonic Research</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S.R. Ovshinsky</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>50.</th>
<th>Amorphous Semiconductors for Switching, Memory, and Imaging Applications</th>
<th>254</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S.R. Ovshinsky and H. Fritzsche</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>51.</th>
<th>Amorphous Materials as Interactive Systems</th>
<th>269</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S.R. Ovshinsky</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>52.</th>
<th>Amorphous Materials as Optical Information Media</th>
<th>275</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S.R. Ovshinsky</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>53.</th>
<th>The Shape of Disorder</th>
<th>280</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S.R. Ovshinsky</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>54.</th>
<th>The Chemistry of Glassy Materials and Their Relevance to Energy Conversion</th>
<th>287</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S.R. Ovshinsky</td>
<td></td>
</tr>
</tbody>
</table>
EPilogue

65. An Approach to the Puzzle of High-Temperature Superconductivity--
 A Letter to David Adler.. 375
 S.R. Ovshinsky

66. S.R. Ovshinsky's review of CREATIVITY AND INTUITION: A Physicist
 Looks at East and West by Hideki Yukawa.................................. 384

Subject Index.. 387