Contents

Foreword xi
Editor's preface xii
Notations, conventions and important formulae xiii

Introduction 1
1 The force-free motion of particles in Newtonian mechanics 2
1.1 Coordinate systems 2
1.2 Equations of motion 4
1.3 The geodesic equation 6
1.4 Geodesic deviation 8

Foundations of Riemannian geometry 12
2 Why Riemannian geometry? 12
3 Riemannian space 14
3.1 The metric 14
3.2 Geodesics and Christoffel symbols 15
3.3 Coordinate transformations 17
3.4 Special coordinate systems 20
3.5 The physical meaning and interpretation of coordinate systems 24
4 Tensor algebra 25
4.1 Scalars and vectors 25
4.2 Tensors and other geometrical objects 27
4.3 Tensor algebra 30
4.4 Symmetries of tensors 33
4.5 Algebraic properties of second-rank tensors 34
4.6* Tetrad and spinor components of tensors 37
5 The covariant derivative and parallel transport 42
5.1 Partial and covariant derivatives 42
5.2 The covariant differential and local parallelism 45
5.3 Parallel displacement along a curve and the parallel propagator 46
Contents

5.4 Fermi-Walker transport 47
5.5 The Lie derivative 49
6 The curvature tensor 51
6.1 Intrinsic geometry and curvature 51
6.2 The curvature tensor and global parallelism of vectors 52
6.3 The curvature tensor and second derivatives of the metric tensor 54
6.4 Properties of the curvature tensor 56
7 Differential operators, integrals and integral laws 60
7.1 The problem 60
7.2 Some important differential operators 61
7.3 Volume, surface and line integrals 62
7.4 Integral laws 64
7.5 Integral conservation laws 66
8 Fundamental laws of physics in Riemannian spaces 67
8.1 How does one find the fundamental physical laws? 67
8.2 Particle mechanics 70
8.3 Electrodynamics in vacuo 73
8.4 Geometrical optics 78
8.5 Thermodynamics 80
8.6 Perfect fluids and dust 83
8.7 Other fundamental physical laws 84

Foundations of Einstein's theory of gravitation 86
9 The fundamental equations of Einstein's theory of gravitation 86
9.1 The Einstein field equations 86
9.2 The Newtonian limit 89
9.3 The equations of motion of test particles 91
9.4 A variational principle for Einstein's theory 95
10 The Schwarzschild solution 99
10.1 The field equations 99
10.2 The solution of the vacuum field equations 102
10.3 General discussion of the Schwarzschild solution 104
10.4 The motion of the planets and perihelion precession 105
10.5 The propagation of light in the Schwarzschild field 108
10.6 Further aspects of the Schwarzschild metric 113
10.7 Experiments to verify the Schwarzschild metric 114
11 The interior Schwarzschild solution 119
11.1 The field equations 119
11.2 The general solution of the field equations 120
11.3 Matching conditions and connection to the exterior Schwarzschild solution 122
11.4 A discussion of the interior Schwarzschild solution 125
12 The Reissner–Nordström (Reissner–Weyl) solution 126

Linearized theory of gravitation, far fields and gravitational waves 128
13 The linearized Einstein theory of gravitation 128
 13.1 Justification for a linearized theory and its realm of validity 128
 13.2 The fundamental equations of the linearized theory 129
 13.3 A discussion of the fundamental equations and a comparison with special-relativistic electrodynamics 130
 13.4 The far field due to a time-dependent source 132
 13.5 A discussion of the properties of the far field (linearized theory) 136
14 Far fields due to arbitrary matter distributions and balance equations for momentum and angular momentum 138
 14.1 What are far fields? 138
 14.2 The energy-momentum pseudo-tensor for the gravitational field 141
 14.3 The balance equations for momentum and angular momentum 144
 14.4 Is there an energy law for the gravitational field? 147
15 Gravitational waves 149
 15.1 Do gravitational waves really exist? 149
 15.2 Plane gravitational waves in the linearized theory 151
 15.3 Plane waves as exact solutions of Einstein's equations 154
 15.4 The experimental evidence for gravitational waves 158
16* The Cauchy problem for the Einstein field equations 160
 16.1 The problem 160
 16.2 Three-dimensional hypersurfaces and reduction formulae for the curvature tensor 160
 16.3 The Cauchy problem for the Einstein vacuum field equations 164
 16.4 The characteristic initial value problem 166
 16.5 Matching conditions at the boundary surface of two metrics 168
Contents

Invariant characterization of exact solutions 171

17 Preferred vector fields and their properties 171
17.1 Special simple vector fields 171
17.2 Timelike vector fields 175
17.3* Null vector fields 178
18* The Petrov classification 183
18.1 What is the Petrov classification? 183
18.2 The algebraic classification of electromagnetic fields 184
18.3 The physical interpretation of null electromagnetic fields 187
18.4 The algebraic classification of gravitational fields 189
18.5 The physical interpretation of degenerate vacuum gravitational fields 192
19 Killing vectors and groups of motion 194
19.1 The problem 194
19.2 Killing vectors 195
19.3 Killing vectors of some simple spaces 196
19.4 Relations between the curvature tensor and Killing vectors 198
19.5 Groups of motion 200
19.6 Killing vectors and conservation laws 204
20* The embedding of Riemannian spaces in flat spaces of higher dimension 210
21 A survey of some selected classes of solutions 211
21.1 Vacuum solutions 212
21.2 Solutions with special symmetry properties 213

Gravitational collapse and black holes 221

22 The Schwarzschild singularity 221
22.1 How does one examine the singular points of a metric? 221
22.2 Radial geodesics in the neighbourhood of the Schwarzschild singularity 222
22.3 The Schwarzschild solution in other coordinate systems 224
22.4 The Schwarzschild solution as a black hole 227
23 Gravitational collapse – the possible life history of a spherically symmetric star 230
23.1 The evolutionary phases of a spherically symmetric star 230
23.2 The critical mass of a star 231
23.3 Gravitational collapse 235
24 Rotating black holes 242
24.1 The Kerr solution 242
24.2 Gravitational collapse – the possible life history of a rotating star 246
24.3 Some properties of black holes 247
24.4 Can and do black holes exist? 248

Cosmology 251
25 Robertson-Walker metrics and their properties 251
25.1 The cosmological principle and Robertson-Walker metrics 251
25.2 The motion of particles and photons in Robertson-Walker metrics 253
25.3 Distance measurement and horizons in Robertson-Walker metrics 256
25.4 Physics in closed universes 260
26 The dynamics of Robertson-Walker metrics and the Friedmann universe 265
26.1 The Einstein field equations for Robertson-Walker metrics 265
26.2 The most important Friedmann universes 267
26.3 Consequences of the field equations for models with arbitrary equation of state having positive pressure and positive rest mass density 271
27 Our universe as a Friedmann model 273
27.1 Red shift and mass density 273
27.2 The earliest epochs of our universe and the cosmic background radiation 275
27.3 A Schwarzschild cavity in the Friedmann universe 279
28 General cosmological models 283
28.1 What is a cosmological model? 283
28.2 Solutions of Bianchi type I with dust 284
28.3 The Gödel universe 288
28.4 Singularity theorems 289

Non-Einsteinian theories of gravitation 292
29 Classical field theories 292
29.1 Why and how can one generalize the Einstein theory? 292
29.2 Possible tests of gravitational theories and the PPN formalism 295
30 Relativity theory and quantum theory 297
30.1 The problem 297
30.2 Unified quantum field theory and the quantization of the gravitational field 298
30.3 Semiclassical gravity 299
30.4* Quantization in a given classical gravitational field. The thermodynamics of black holes 300

Bibliography 309
Index 319