Contents

Preface ... xi
Notations and Conventions xix
Editor's Foreword xxii

Part I: Feynman Diagrams and Quantum Electrodynamics

1 Invitation: Pair Production in e^+e^- Annihilation 3

2 The Klein-Gordon Field 13
 2.1 The Necessity of the Field Viewpoint 13
 2.2 Elements of Classical Field Theory 15
 Lagrangian Field Theory; Hamiltonian Field Theory;
 Noether's Theorem
 2.3 The Klein-Gordon Field as Harmonic Oscillators . 19
 2.4 The Klein-Gordon Field in Space-Time 25
 Causality; The Klein-Gordon Propagator;
 Particle Creation by a Classical Source
 Problems ... 33

3 The Dirac Field 35
 3.1 Lorentz Invariance in Wave Equations 35
 3.2 The Dirac Equation 40
 Weyl Spinors
 3.3 Free-Particle Solutions of the Dirac Equation . 45
 Spin Sums
 3.4 Dirac Matrices and Dirac Field Bilinears 49
 3.5 Quantization of the Dirac Field 52
 Spin and Statistics; The Dirac Propagator
 3.6 Discrete Symmetries of the Dirac Theory 64
 Parity; Time Reversal; Charge Conjugation
 Problems ... 71
Contents

4 Interacting Fields and Feynman Diagrams

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Perturbation Theory—Philosophy and Examples</td>
<td>77</td>
</tr>
<tr>
<td>4.2 Perturbation Expansion of Correlation Functions</td>
<td>82</td>
</tr>
<tr>
<td>4.3 Wick's Theorem</td>
<td>88</td>
</tr>
<tr>
<td>4.4 Feynman Diagrams</td>
<td>90</td>
</tr>
<tr>
<td>4.5 Cross Sections and the S-Matrix</td>
<td>99</td>
</tr>
<tr>
<td>4.6 Computing S-Matrix Elements from Feynman Diagrams</td>
<td>108</td>
</tr>
<tr>
<td>4.7 Feynman Rules for Fermions</td>
<td>115</td>
</tr>
<tr>
<td>Yukawa Theory</td>
<td></td>
</tr>
<tr>
<td>4.8 Feynman Rules for Quantum Electrodynamics</td>
<td>123</td>
</tr>
<tr>
<td>The Coulomb Potential</td>
<td></td>
</tr>
<tr>
<td>Problems</td>
<td>126</td>
</tr>
</tbody>
</table>

5 Elementary Processes of Quantum Electrodynamics

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 $e^+e^- \rightarrow \mu^+\mu^-$: Introduction</td>
<td>131</td>
</tr>
<tr>
<td>Trace Technology; Unpolarized Cross Section; $e^+e^- \rightarrow$ Hadrons</td>
<td></td>
</tr>
<tr>
<td>5.2 $e^+e^- \rightarrow \mu^+\mu^-$: Helicity Structure</td>
<td>141</td>
</tr>
<tr>
<td>5.3 $e^+e^- \rightarrow \mu^+\mu^-$: Nonrelativistic Limit</td>
<td>146</td>
</tr>
<tr>
<td>Bound States; Vector Meson Production and Decay</td>
<td></td>
</tr>
<tr>
<td>5.4 Crossing Symmetry</td>
<td>153</td>
</tr>
<tr>
<td>Electron-Muon Scattering; Mandelstam Variables</td>
<td></td>
</tr>
<tr>
<td>5.5 Compton Scattering</td>
<td>158</td>
</tr>
<tr>
<td>Photon Polarization Sums; The Klein-Nishina Formula; High-Energy Behavior; Pair Annihilation into Photons</td>
<td></td>
</tr>
<tr>
<td>Problems</td>
<td>169</td>
</tr>
</tbody>
</table>

6 Radiative Corrections: Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Soft Bremsstrahlung</td>
<td>176</td>
</tr>
<tr>
<td>Classical Computation; Quantum Computation</td>
<td></td>
</tr>
<tr>
<td>6.2 The Electron Vertex Function: Formal Structure</td>
<td>184</td>
</tr>
<tr>
<td>6.3 The Electron Vertex Function: Evaluation</td>
<td>189</td>
</tr>
<tr>
<td>Feynman Parameters; Precision Tests of QED</td>
<td></td>
</tr>
<tr>
<td>6.4 The Electron Vertex Function: Infrared Divergence</td>
<td>199</td>
</tr>
<tr>
<td>*6.5 Summation and Interpretation of Infrared Divergences</td>
<td>202</td>
</tr>
<tr>
<td>Problems</td>
<td>208</td>
</tr>
</tbody>
</table>

7 Radiative Corrections: Some Formal Developments

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Field-Strength Renormalization</td>
<td>211</td>
</tr>
<tr>
<td>The Electron Self-Energy</td>
<td></td>
</tr>
<tr>
<td>7.2 The LSZ Reduction Formula</td>
<td>222</td>
</tr>
<tr>
<td>7.3 The Optical Theorem</td>
<td>230</td>
</tr>
<tr>
<td>The Optical Theorem for Feynman Diagrams; Unstable Particles</td>
<td></td>
</tr>
<tr>
<td>7.4 The Ward-Takahashi Identity</td>
<td>238</td>
</tr>
<tr>
<td>7.5 Renormalization of the Electric Charge</td>
<td>244</td>
</tr>
<tr>
<td>Dimensional Regularization</td>
<td></td>
</tr>
<tr>
<td>Problems</td>
<td>257</td>
</tr>
</tbody>
</table>

Final Project: Radiation of Gluon Jets | 259 |
Contents

Part II: Renormalization

8 Invitation: Ultraviolet Cutoffs and Critical Fluctuations 265

9 Functional Methods 275
9.1 Path Integrals in Quantum Mechanics 275
9.2 Functional Quantization of Scalar Fields 282
Correlation Functions; Feynman Rules; Functional Derivatives and the Generating Functional
9.3 Quantum Field Theory and Statistical Mechanics 292
9.4 Quantization of the Electromagnetic Field 294
9.5 Functional Quantization of Spinor Fields 298
Anticommuting Numbers; The Dirac Propagator; Generating Functional for the Dirac Field; QED: Functional Determinants
9.6 Symmetries in the Functional Formalism 306
Equations of Motion; Conservation Laws; The Ward-Takahashi Identity
Problems 312

10 Systematics of Renormalization 315
10.1 Counting of Ultraviolet Divergences 315
10.2 Renormalized Perturbation Theory 323
One-Loop Structure of ϕ^4 Theory
10.3 Renormalization of Quantum Electrodynamics 330
One-Loop Structure of QED
10.4 Renormalization Beyond the Leading Order 335
*10.5 A Two-Loop Example 338
Problems 344

11 Renormalization and Symmetry 347
11.1 Spontaneous Symmetry Breaking 348
The Linear Sigma Model; Goldstone's Theorem
*11.2 Renormalization and Symmetry: An Explicit Example 352
*11.3 The Effective Action 364
*11.4 Computation of the Effective Action 370
The Effective Action in the Linear Sigma Model
*11.5 The Effective Action as a Generating Functional 379
*11.6 Renormalization and Symmetry: General Analysis 383
Goldstone's Theorem Revisited
Problems 389

12 The Renormalization Group 393
12.1 Wilson's Approach to Renormalization Theory 394
12.2 The Callan-Symanzik Equation 406
Renormalization Conditions; The Callan-Symanzik Equation; Computation of β and γ; The Meaning of β and γ
Contents

12.3 Evolution of Coupling Constants ... 418
 Solution of the Callan-Symanzik Equation; An Application to QED; Alternatives for the Running of Coupling Constants

12.4 Renormalization of Local Operators ... 428

12.5 Evolution of Mass Parameters .. 432
 Critical Exponents: A First Look
 Problems ... 438

13 Critical Exponents and Scalar Field Theory 439

*13.1 Theory of Critical Exponents .. 440
 Exponents of the Spin Correlation Function; Exponents of Thermodynamic Functions; Values of the Critical Exponents

*13.2 Critical Behavior in Four Dimensions ... 451

*13.3 The Nonlinear Sigma Model ... 454
 Problems ... 466

*Final Project: The Coleman-Weinberg Potential 469

Part III: Non-Abelian Gauge Theories

14 Invitation: The Parton Model of Hadron Structure 473

15 Non-Abelian Gauge Invariance .. 481
 15.1 The Geometry of Gauge Invariance .. 482
 15.2 The Yang-Mills Lagrangian .. 486
 *15.3 The Gauge-Invariant Wilson Loop ... 491
 15.4 Basic Facts About Lie Algebras .. 495
 Classification of Lie Algebras; Representations; The Casimir Operator
 Problems ... 502

16 Quantization of Non-Abelian Gauge Theories 505
 16.1 Interactions of Non-Abelian Gauge Bosons 506
 Feynman Rules for Fermions and Gauge Bosons; Equality of Coupling Constants; A Flaw in the Argument
 16.2 The Faddeev-Popov Lagrangian .. 512
 16.3 Ghosts and Unitarity ... 515
 *16.4 BRST Symmetry ... 517
 *16.5 One-Loop Divergences of Non-Abelian Gauge Theory 521
 The Gauge Boson Self-Energy; The β Function; Relations among Counterterms
 *16.6 Asymptotic Freedom: The Background Field Method 533
 16.7 Asymptotic Freedom: A Qualitative Explanation 541
 Problems ... 544
17 Quantum Chromodynamics .. 545
 17.1 From Quarks to QCD .. 545
 17.2 e^+e^- Annihilation into Hadrons 548
 Total Cross Section; The Running of α_s; Gluon Emission
 17.3 Deep Inelastic Scattering 555
 Deep Inelastic Neutrino Scattering; The Distribution Functions
 17.4 Hard-Scattering Processes in Hadron Collisions 563
 Lepton Pair Production; Kinematics; Jet Pair Production
 17.5 Parton Evolution .. 574
 The Equivalent Photon Approximation; Multiple Splittings;
 Evolution Equations for QED; The Altarelli-Parisi Equations
 17.6 Measurements of α_s 593
 Problems .. 595

18 Operator Products and Effective Vertices 599
 *18.1 Renormalization of the Quark Mass Parameter 599
 *18.2 QCD Renormalization of the Weak Interactions 605
 *18.3 The Operator Product Expansion 612
 *18.4 Operator Analysis of e^+e^- Annihilation 615
 *18.5 Operator Analysis of Deep Inelastic Scattering 621
 Kinematics; Expansion of the Operator Product;
 The Dispersion Integral; Operator Rescaling; Operator Mixing;
 Relation to the Altarelli-Parisi Equations
 Problems .. 647

19 Perturbation Theory Anomalies 651
 *19.1 The Axial Current in Two Dimensions 651
 Vacuum Polarization Diagrams; The Current Operator
 Equation; An Example with Fermion Number Nonconservation
 *19.2 The Axial Current in Four Dimensions 659
 The Current Operator Equation; Triangle Diagrams;
 Chiral Transformation of the Functional Integral
 *19.3 Goldstone Bosons and Chiral Symmetries in QCD 667
 Spontaneous Breaking of Chiral Symmetry;
 Anomalies of Chiral Currents
 *19.4 Chiral Anomalies and Chiral Gauge Theories 676
 *19.5 Anomalous Breaking of Scale Invariance 682
 Problems .. 686

20 Gauge Theories with Spontaneous Symmetry Breaking 689
 20.1 The Higgs Mechanism 690
 An Abelian Example; Systematics of the Higgs Mechanism;
 Non-Abelian Examples; Formal Description
 20.2 The Glashow-Weinberg-Salam Theory of Weak Interactions . 700
 Gauge Boson Masses; Coupling to Fermions; Experimental
 Consequences of the Glashow-Weinberg-Salam Theory;
 Fermion Mass Terms; The Higgs Boson; A Higgs Sector?