CHAPTER V. CUBATURE FORMULAS CONSIDERING A
REGULAR BOUNDARY LAYER 247

§ 1. Formulas for Periodic Functions 247
§ 2. Norm of the Error Functional for Periodic Functions 251
§ 3. Composition of Formulas with Small Supports 254
§ 4. Error for Finite Functions 258
§ 5. Construction of Formulas with a Regular Boundary Layer 270
§ 6. Norm of the Error Functional of Cubature Formulas with a
Regular Boundary Layer in the Space $L_2^{(m)}(R^n)$ 276
§ 7. Norm of the Error of Formulas with Regular Boundary
Layer in $L_2^{(m)}(\Omega)$ 287

CHAPTER VI. OPTIMAL FORMULAS 290

§ 1. Formulation of the Problem on Optimal Coefficients 290
§ 2. Fourier Transformation of a Discrete Potential 296
§ 3. Properties of the Operator $\mathcal{D}_{hH}^{(m)}[\beta]^*$ 300
§ 4. Discrete Analog of a Polyharmonic Operator 306
§ 5. Optimal Coefficients of One-Dimensional Formulas 319

CHAPTER VII. CONVERGENCE OF CUBATURE
FORMULAS IN VARIOUS CLASSES AND
DIFFERENT FUNCTIONS 325

§ 1. Functional Class $\Phi(\beta|A)$ 325
§ 2. Functional Class $\Psi(\rho|\sigma)$ 333
§ 3. Cubature Formulas for Infinitely Differentiable Functions 340
§ 4. Convergence of Cubature Formulas for an Arbitrary
Function $\varphi(x) \in \tilde{L}_2^{(m)}$ 344

CHAPTER VIII. CUBATURE FORMULAS FOR RATIONAL
POLYHEDRA 347

§ 1. Convex Polyhedra. Euler's Formula 347
§ 2. Rational Polyhedra 355
§ 3. Structure of Formulas for Rational Polyhedra 358
§ 4. Cubature Formulas for a Polyhedron and Its Solid Angles 360
§ 5. Formulas with a Formal Boundary Layer 362

BIBLIOGRAPHY 369

INDEX 377