INTRODUCTION 1

CHAPTER 1 THE CONSERVATION OF ENERGY 6

Julius Robert Mayer 6
A Conservation Laws 8
B Gravitational Energy 10
1. A Demonstration with an Inclined Plane 10
2. The Rule for Measuring Gravitational Energy 14
3. A Mental Experiment 17
4. The Role of Mathematics in Science 19
C Kinetic Energy 21
1. Energy of Motion 21
2. The Rule for Counting Kinetic Energy 22
3. Systems with Only Kinetic Energy 28
D Units of Length, Mass, Weight, and Energy 31
E Conservation Laws and Human Freedom 33
F Heat Energy 36
1. Friction and a New Form of Energy 36
2. The Nature of Heat 37
3. Measuring Heat: Temperature 40
4. Units of Heat 42
CHAPTER 2 THE SECOND LAW OF THERMODYNAMICS 56

William Thompson 56
A Reversible and Irreversible Phenomena 58
B States of a System and Probability of Configurations 60
1. An Introduction to Probability Theory 60
2. A Pendulum in Air 63
3. Evolution to More Probable Configurations 68
4. Behavior of Realistic Systems with Large Numbers of Molecules 72
5. The Direction of Time 73
C Mechanical Energy and Heat 74
D The Irreversible Flow of Heat 76
E Doing Work with Heat 79
1. The Limited Ability to Do Work with Heat and the Universal Decrease of Usable Energy 79
2. The Efficiency of Machines 81
F Entropy and Order 89
1. Entropy 89
2. Order 90
G Resistance to the Implications of the Second Law 93
H The Second Law Applied to Human Society 98
I The Second Law Used to Refute the Theory of Evolution 104

CHAPTER 3 THE RELATIVITY OF TIME 107

Albert Einstein 107
A Relativity in Brief 110
B Science Leading to the Theory of Relativity 112
1. The Relativity of Mechanics 113
2. The Relativity of Electricity and Magnetism 113
3. The Discovery of Light as an Electromagnetic Phenomenon 116
4. The Michelson-Morley Experiment 118
Contents

C The Theory of Relativity 124
1. Einstein’s Postulates 124
2. Consequences of Einstein’s Postulates: The Strange Law for Combining Speeds 125
3. Consequences of Einstein’s Postulates: The Banishment of Absolute Simultaneity 129
4. Quantitative Derivation of Time Dilation 132
5. Experimental Test of Time Dilation: The Disintegration of the Muon 142
6. Length Contraction 145
7. Mass-Energy Relation $E_0 = mc^2$ 149
8. Meaning of the Speed of Light 151

D Abolition of Absolute Space and Time 152
1. Aristotle’s View of Space and Motion 152
2. Newton’s View of Space and Time 153
3. Kant’s View of Space and Time 154

E Einstein’s Approach to Science 156
1. Scientific Postulates as “Free Inventions” of the Human Mind 156
2. Deductive versus Inductive Thinking and the Influence of Hume on Einstein 158

F The Influence of the Theory of Relativity on Literature 161

G Relativity and Sculpture 163

CHAPTER 4 THE WAVE-PARTICLE DUALITY OF NATURE 167

Warner Heisenberg 167

A Waves 170
1. Definition of a Wave 170
2. Properties of Waves: Wavelength, Frequency, Speed, and Amplitude 170
3. Interference of Waves 172
4. Nonlocality of Waves 173
5. Light as a Wave 174

B The Photoelectric Effect 174
1. The Nature of the Electron 174
2. Discovery of the Photoelectric Effect 176
3. Einstein’s Photon Theory of Light 178
4. Verification of the Photon Nature of Light 182

C The Double-Slit Experiment 183
1. Description of the Experiment 183