Multirate Systems
and Filter Banks

P.P. Vaidyanathan

Department of Electrical Engineering
California Institute of Technology, Pasadena
Contents

Preface xi

PART 1 INTRODUCTORY CHAPTERS

1 Introduction 1
 1.1 Major Developments 3
 1.2 Scope and Outline 8

2 Review of Discrete-Time Systems 12
 2.0 Introduction 12
 2.1 Discrete-Time Signals 12
 2.2 Multi-Input Multi-Output Systems 24
 2.3 Notations 28
 2.4 Discrete-Time Filters (Digital Filters) 31
 Problems 39

3 Review of Digital Filters 42
 3.0 Introduction 42
 3.1 Filter Design Specifications 42
 3.2 FIR Filter Design 45
 3.3 IIR Filter Design 60
 3.4 Allpass Filters 71
 3.5 Special Types of Filters 83
 3.6 IIR Filters Based on Two Allpass Filters 84
 3.7 Concluding Remarks 91
 Problems 93

4 Fundamentals of Multirate Systems 100
 4.0 Introduction 100
 4.1 Basic Multirate Operations 100
 4.2 Interconnection of Building Blocks 118
 4.3 The Polyphase Representation 120
 4.4 Multistage Implementations 134
 4.5 Some Applications of Multirate Systems 143
 4.6 Special Filters and Filter Banks 151
 4.7 Multigrid Methods 168
 Problems 178
PART 2 MULTIRATE FILTER BANKS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Maximally Decimated Filter Banks</td>
<td>188</td>
</tr>
<tr>
<td>5.0</td>
<td>Introduction</td>
<td>188</td>
</tr>
<tr>
<td>5.1</td>
<td>Errors Created in the QMF Bank</td>
<td>191</td>
</tr>
<tr>
<td>5.2</td>
<td>A Simple Alias-Free QMF System</td>
<td>196</td>
</tr>
<tr>
<td>5.3</td>
<td>Power Symmetric QMF Banks</td>
<td>204</td>
</tr>
<tr>
<td>5.4</td>
<td>M-channel Filter Banks</td>
<td>223</td>
</tr>
<tr>
<td>5.5</td>
<td>Polyphase Representation</td>
<td>230</td>
</tr>
<tr>
<td>5.6</td>
<td>Perfect Reconstruction (PR) Systems</td>
<td>234</td>
</tr>
<tr>
<td>5.7</td>
<td>Alias-Free Filter Banks</td>
<td>245</td>
</tr>
<tr>
<td>5.8</td>
<td>Tree Structured Filter Banks</td>
<td>254</td>
</tr>
<tr>
<td>5.9</td>
<td>Transmultiplexers</td>
<td>259</td>
</tr>
<tr>
<td>5.10</td>
<td>Summary and Tables</td>
<td>266</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>272</td>
</tr>
<tr>
<td>6</td>
<td>Paraunitary Perfect Reconstruction (PR) Filter Banks</td>
<td>286</td>
</tr>
<tr>
<td>6.0</td>
<td>Introduction</td>
<td>286</td>
</tr>
<tr>
<td>6.1</td>
<td>Lossless Transfer Matrices</td>
<td>288</td>
</tr>
<tr>
<td>6.2</td>
<td>Filter Bank Properties Induced by Paraunitariness</td>
<td>294</td>
</tr>
<tr>
<td>6.3</td>
<td>Two Channel FIR Paraunitary QMF Banks</td>
<td>298</td>
</tr>
<tr>
<td>6.4</td>
<td>The Two Channel Paraunitary QMF Lattice</td>
<td>302</td>
</tr>
<tr>
<td>6.5</td>
<td>M-channel FIR Paraunitary Filter Banks</td>
<td>314</td>
</tr>
<tr>
<td>6.6</td>
<td>Transform Coding and the “LOT”</td>
<td>322</td>
</tr>
<tr>
<td>6.7</td>
<td>Summary, Comparisons, and Tables</td>
<td>326</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>333</td>
</tr>
<tr>
<td>7</td>
<td>Linear Phase Perfect Reconstruction QMF Banks</td>
<td>337</td>
</tr>
<tr>
<td>7.0</td>
<td>Introduction</td>
<td>337</td>
</tr>
<tr>
<td>7.1</td>
<td>Some Necessary Conditions</td>
<td>337</td>
</tr>
<tr>
<td>7.2</td>
<td>Lattice Structures for Linear Phase FIR PR QMF Banks</td>
<td>339</td>
</tr>
<tr>
<td>7.3</td>
<td>Formal Synthesis of Linear Phase FIR PR QMF Lattice</td>
<td>347</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>351</td>
</tr>
<tr>
<td>8</td>
<td>Cosine Modulated Filter Banks</td>
<td>353</td>
</tr>
<tr>
<td>8.0</td>
<td>Introduction</td>
<td>353</td>
</tr>
<tr>
<td>8.1</td>
<td>The Pseudo QMF Bank</td>
<td>354</td>
</tr>
<tr>
<td>8.2</td>
<td>Design of the Pseudo QMF Bank</td>
<td>363</td>
</tr>
<tr>
<td>8.3</td>
<td>Efficient Polyphase Structures</td>
<td>370</td>
</tr>
<tr>
<td>8.4</td>
<td>Deeper Properties of Cosine Matrices</td>
<td>373</td>
</tr>
<tr>
<td>8.5</td>
<td>Cosine Modulated Perfect Reconstruction Systems</td>
<td>377</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>392</td>
</tr>
</tbody>
</table>

PART 3 SPECIAL TOPICS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Quantization Effects</td>
<td>394</td>
</tr>
<tr>
<td>9.0</td>
<td>Introduction</td>
<td>394</td>
</tr>
<tr>
<td>9.1</td>
<td>Types of Quantization Effects</td>
<td>394</td>
</tr>
<tr>
<td>9.2</td>
<td>Review of Standard Techniques</td>
<td>397</td>
</tr>
</tbody>
</table>

viii Contents
9.3 Noise Transmission in Multirate Systems 405
9.4 Noise in Filter Banks 408
9.5 Filter Bank Output Noise 412
9.6 Limit Cycles 416
9.7 Coefficient Quantization 418

Problems 424

10 Multirate Filter Bank Theory and Related Topics 427
10.0 Introduction 427
10.1 Block Filters, LPTV Systems and Multirate Filter Banks 427
10.2 Unconventional Sampling Theorems 436

Problems 454

11 The Wavelet Transform and its Relation to Multirate Filter Banks 457
11.0 Introduction 457
11.1 Background and Outline 458
11.2 The Short-Time Fourier Transform 463
11.3 The Wavelet Transform 481
11.4 Discrete-Time Orthonormal Wavelets 500
11.5 Continuous-Time Orthonormal Wavelet Basis 510
11.6 Concluding Remarks 536

Problems 539

12 Multidimensional Multirate Systems 545
12.0 Introduction 545
12.1 Multidimensional Signals 546
12.2 Sampling a Multidimensional Signal 555
12.3 Minimum Sampling Density 568
12.4 Multirate Fundamentals 572
12.5 Alias-Free Decimation 597
12.6 Cascade Connections 603
12.7 Multirate Filter Design 608
12.8 Special Filters and Filter Banks 623
12.9 Maximally Decimated Filter Banks 627
12.10 Concluding Remarks 641

Problems 650

PART 4 MULTIVARIABLE AND LOSSLESS SYSTEMS

13 Review of Discrete-Time Multi-Input Multi-Output LTI Systems 660
13.0 Introduction 660
13.1 Multi-Input Multi-Output Systems 661
13.2 Matrix Polynomials 661
13.3 Matrix Fraction Descriptions 665
13.4 State Space Descriptions 669
13.5 The Smith-McMillan Form 687
13.6 Poles of Transfer Matrices 699
13.7 Zeros of Transfer Matrices 703
13.8 Degree of a Transfer Matrix 707
13.9 FIR Transfer Matrices 708
13.10 Causal Inverses of Causal Systems 711
Problems 715

14 Paraunitary and Lossless Systems 722
14.0 Introduction 722
14.1 A Brief History 723
14.2 Fundamentals of Lossless Systems 724
14.3 Lossless Systems with Two Outputs 727
14.4 Structures for \(M \times M \) and \(M \times 1 \) FIR Lossless Systems 731
14.5 State Space Manifestation of Lossless Property 740
14.6 Factorization of Unitary Matrices 745
14.7 Smith-McMillan Form and Pole-Zero Pattern 754
14.8 The Modulus Property 758
14.9 Structures for IIR Lossless Systems 759
14.10 Modified Lossless Structures 763
14.11 Preserving Lossless Property Under Quantization 768
14.12 Summary and Tables 771
Problems 775

APPENDICES

A Review of Matrices 782
A.0 Introduction 782
A.1 Definitions and Examples 782
A.2 Basic Operations 783
A.3 Determinants 786
A.4 Linear Independence, Rank, and Related Issues 787
A.5 Eigenvalues and Eigenvectors 790
A.6 Special Types of Matrices 793
A.7 Unitary Triangularization 798
A.8 Maximization and Minimization 798
A.9 Properties Preserved in matrix products 799
Problems 800

B Review of Random Processes 803
B.0 Introduction 803
B.1 Real Random Variables 803
B.2 Real Random Processes 806
B.3 Passage Through LTI Systems 810
B.4 The Complex Case 811
B.5 The Vector Case 812

C Quantization of Subband Signals 816
C.0 Introduction 816
C.1 Quantizer Noise Variance 816
C.2 The Ideal Subband Coder 818
C.3 The Orthogonal Transform Coder 826
C.4 Similarities and Differences 833