INTEGRAL EQUATION METHODS IN SCATTERING THEORY

DAVID COLTON
Department of Mathematical Sciences
University of Delaware

RAINER KRESS
Institut für Numerische und Angewandte Mathematik
Universität Göttingen

KRIEGER PUBLISHING COMPANY
MALABAR, FLORIDA
1992
Contents

1. The Riesz–Fredholm Theory for Compact Operators 1
 1.1. Compact Operators 2
 1.2. The Riesz Theory 9
 1.3. The Fredholm Theory 16
 1.4. A Singular Perturbation Problem 23
 1.5. Successive Approximations 26

2. Regularity Properties of Surface Potentials 31
 2.1. Geometry of Surfaces 32
 2.2. Hölder Continuity 37
 2.3. Weakly Singular Integral Operators on Surfaces 39
 2.4. Single- and Double-Layer Potentials 46
 2.5. Derivatives of Single- and Double-Layer Potentials 51
 2.6. Vector Potentials 58
 2.7. Integral Operators for Boundary-Value Problems 61

3. Boundary-Value Problems for the Scalar Helmholtz Equation 65
 3.1. Time-Harmonic Acoustic Scattering 66
 3.2. Green's Representation Theorem and Sommerfeld's Radiation Condition 68
 3.3. The Dirichlet and Neumann Boundary-Value Problems: Uniqueness Theorems 75
 3.4. The Existence of Solutions to the Dirichlet and Neumann Problems 79
 3.5. Boundary Integral Equations of the First Kind 87
 3.6. Modified Integral Equations 90
 3.7. The Impedance Boundary-Value Problem 97
 3.8. The Transmission Boundary-Value Problem 99
 3.9. Integral Equations Based on the Representation Theorems 102
 3.10. The Two-Dimensional Case 106
 4.1. Time-Harmonic Electromagnetic Scattering
 4.2. Representation Theorems and Radiation Conditions
 4.3. The Boundary-Value Problems for a Perfect Conductor: Uniqueness Theorems
 4.4. Existence of Solutions to the Electromagnetic Boundary-Value Problems by Integral Equations of the Second Kind
 4.5. Boundary Integral Equations of the First Kind
 4.6. Modified Integral Equations
 4.7. The Impedance Boundary-Value Problem
 4.8. Integral Equations Based on the Representation Theorems

5. Low Frequency Behavior of Solutions to Boundary-Value Problems in Scattering Theory
 5.1. Iterative Methods for Solving the Exterior Dirichlet and Neumann Problems
 5.2. Iterative Methods for Electromagnetic Problems
 5.3. Low Wave Number Behavior of Solutions to the Exterior Electromagnetic Boundary-Value Problems

6. The Inverse Scattering Problem: Exact Data
 6.1. Entire Functions of Exponential Type
 6.2. Far-Field Patterns and Their Classification
 6.3. Uniqueness of Solutions to the Inverse Scattering Problem

7. Improperly Posed Problems and Compact Families
 7.1. A Priori Assumptions and the Solution of Improperly Posed Problems
 7.2. Linearized Improperly Posed Problems in Scattering Theory
 7.3. Normal Families of Univalent Functions

8. The Determination of the Shape of an Obstacle from Inexact Far-Field Data
 8.1. A Model Problem
 8.2. The Determination of the Shape of an Obstacle in \(\mathbb{R}^2 \)
 8.3. The Determination of the Shape of an Obstacle in \(\mathbb{R}^3 \)
CONTENTS

9. Optimal Control Problems in Radiation and Scattering Theory 244
 9.1. Weak Compactness in Hilbert Space 245
 9.2. Optimal Control for a Radiation Problem 247
 9.3. Optimal Control for a Scattering Problem 254

References 261

Index 269