Contents

1. BASIC CONCEPTS AND DEFINITIONS OF GRAPH THEORY 1

1.1 Introduction 1
1.2 Basic Definitions 2
1.2.1 Definition of a Graph 2
1.2.2 Adjacency and Incidence 3
1.2.3 Isomorphic Graphs 4
1.2.4 Graph Operations 4
1.2.5 Walks, Trials and Paths 5
1.2.6 Connectedness 6
1.2.7 Cycles and Cut Sets 6
1.2.8 Trees, Spanning Trees and Shortest Route Trees 7
1.3 Different Types of Graphs 8
1.4 Vector Spaces Associated with a Graph 10
1.4.1 Cycle Space 10
1.4.2 Cut Set Space 11
1.4.3 Orthogonality Property 11
1.4.4 Fundamental Cycle Bases 11
1.4.5 Fundamental Cut Set Bases 12
1.5 Matrices Associated with a Graph 13
1.5.1 Matrix Representation of a Graph 14
1.5.2 Cycle Bases Matrices 17
1.5.3 Cut Set Bases Matrices 19
1.6 Directed Graphs and Their Matrices 21
1.7 Planar Graphs-Euler's Polyhedra Formula 23
1.7.1 Planar Graphs 23
1.7.2 Theorems for Planarity 25
1.8 Maximal Matching in Bipartite Graphs 27
1.8.1 Definitions 27
1.8.2 Theorems on Matching 27
1.8.3 Maximum Matching 28
Exercises 30

2. TOPOLOGICAL PROPERTIES OF SKELETAL STRUCTURES 35

2.1 Introduction 35
2.2 Mathematical Model of a Skeletal Structure 36
2.3 Union-intersection Method 38
2.3.1 A Unifying Function 40
2.3.2 An Expansion Process 41
2.3.3 An Intersection Theorem 42
CONTENTS

5.5 General Loading 142
5.6 Computational Aspects of the Matrix Displacement Method 143
Exercises 145

6. MATRIX FORCE METHOD 149

6.1 Introduction 149
6.2 Formulation 150
6.3 Generalized Cycle Bases of a Graph 155
6.4 Minimal and Optimal Generalized Cycle Bases 158
6.5 Pattern Equivalence of Flexibility and Cycle Adjacency Matrices 160
6.6 Minimal GCB of a Graph 160
6.7 Selection of a Subminimal GCB: Practical Methods 161
 6.7.1 Method 1 161
 6.7.2 Method 2 162
 6.7.3 Method 3 163
6.8 Force Method for the Analysis of Rigid-jointed Skeletal Structures 164
 6.8.1 Cycle Bases Selection: Topological Methods 165
 6.8.2 Cycle Bases Selection: Graph-theoretical Methods 168
 6.8.3 Formation of B_0 and B_1 Matrices 184
6.9 Force Method for the Analysis of Pin-jointed Planar Trusses 187
 6.9.1 Associate Graphs for Selection of a Subminimal GCB 188
6.10 Analysis of General Structures by the Force Method 194
 6.10.1 Algebraic Methods 195
 6.10.2 Algebraic-topological Methods 199
Exercises 202

7. ORDERING FOR BANDWIDTH AND PROFILE OPTIMIZATION 205

7.1 Introduction 205
7.2 Preliminaries 207
7.3 Pattern Equivalence of Stiffness and Cut Set Adjacency Matrices 210
7.4 A Shortest Route Tree and its Properties 211
7.5 Nodal Ordering for Bandwidth Optimization 212
 7.5.1 A Good Starting Node 213
 7.5.2 Primary Nodal Decomposition 218
 7.5.3 Transversal P of an SRT 219
 7.5.4 Nodal Ordering 220
 7.5.5 Examples 221
7.6 A Connectivity Coordinate System for Nodal Ordering 222
 7.6.1 A Connectivity Coordinate System for Planar Graphs 223
 7.6.2 A Connectivity Coordinate System for Space Graphs 224
7.7 Nodal Numbering for Profile Reduction 226
7.8 Graph-theoretical Interpretation of Gaussian Elimination 228
7.9 Element Ordering for Bandwidth Optimization of Flexibility Matrices 230
8. CONDITIONING OF STRUCTURAL MATRICES

8.1 Introduction
8.2 Condition Numbers
 8.2.1 The Ratio of Extreme Eigenvalues
 8.2.2 Determinant of a Row Normalized Matrix
 8.2.3 The Ratio of Determinants
8.3 Weighted Graph and an Admissible Member
8.4 Optimally Conditioned Cycle Bases
 8.4.1 Formulation of the Problem
8.5 Suboptimally Conditioned Cycle Bases
 8.5.1 Algorithm A
 8.5.2 Algorithm B
 8.5.3 Algorithm C
 8.5.4 Examples
8.6 Optimally Conditioned Cut Set Bases
 8.6.1 Mathematical Formulation of the Problem
8.7 Suboptimally Conditioned Cut Set Bases
 8.7.1 Algorithm
 8.7.2 Example
Exercises

9. MATROIDS AND SKELETAL STRUCTURES

9.1 Introduction
9.2 Axiom Systems for a Matroid
 9.2.1 Definition in terms of Independence
 9.2.2 Definition in terms of Bases
 9.2.3 Definition in terms of Circuits
 9.2.4 Definition in terms of Rank
9.3 Matroids Relevant to Structural Mechanics
 9.3.1 A Basis for a Finite Vector Space
 9.3.2 A Basis for Cycle Space of a Graph
 9.3.3 A Basis for Cut Set Space of a Graph
 9.3.4 Cycle Matroid of a Graph
 9.3.5 Cocycle Matroid of a Graph
 9.3.6 Rigidity Matroid of a Graph
 9.3.7 Matroid for Null Basis of a Matrix