Contents

Preface ... xxii
Introduction ... 1

I
TRANSITION AMPLITUDES IN ELECTRODYNAMICS

Introduction ... 5

A. Probability Amplitude Associated with a Physical Process 7

B. Time Dependence of Transition Amplitudes 9
 1. Coupling between Discrete Isolated States 9
 2. Resonant Coupling between a Discrete Level and a Continuum 10
 3. Couplings inside a Continuum or between Continua 12

C. Application to Electrodynamics 15
 1. Coulomb Gauge Hamiltonian 15
 2. Expansion in Powers of the Charges \(q_a \) 16
 3. Expansion in Powers of the Interaction with the Transverse Field .. 17
 4. Advantages of Including the Coulomb Interaction in the Particle Hamiltonian 18
 5. Diagrammatic Representation of Transition Amplitudes 19

COMPLEMENT A1—PERTURBATIVE CALCULATION OF TRANSITION AMPLITUDES—SOME USEFUL RELATIONS

Introduction ... 23

1. Interaction Representation 23

COMPLEMENT B₁—DESCRIPTION OF THE EFFECT OF A PERTURBATION BY AN EFFECTIVE HAMILTONIAN

1. Introduction — Motivation
2. Principle of the Method
4. Case of Two Interacting Systems

COMPLEMENT C₁—DISCRETE LEVEL COUPLED TO A BROAD CONTINUUM: A SIMPLE MODEL

Introduction

1. Description of the Model — a. The Discrete State and the Continuum. b. Discretization of the Continuum. c. Simplifying Assumptions
4. Generalization to More Realistic Continua. Diagonalization of the Hamiltonian without Discretization
A SURVEY OF SOME INTERACTION PROCESSES BETWEEN PHOTONS AND ATOMS

Introduction .. 67

A. Emission Process: A New Photon Appears 69
 1. Spontaneous Emission between Two Discrete Atomic Levels. Radiative Decay of an Excited Atomic State—
 a. Diagrammatic Representation. b. Spontaneous Emission Rate. c. Nonperturbative Results 69
 2. Spontaneous Emission between a Continuum State and a Discrete State—
 a. First Example: Radiative Capture. b. Second Example: Radiative Dissociation of a Molecule 73
 3. Spontaneous Emission between Two States of the Ionization Continuum—Bremsstrahlung 76

B. Absorption Process: A Photon Disappears 78
 1. Absorption between Two Discrete States 78
 2. Absorption between a Discrete State and a Continuum State—
 3. Absorption between Two States of the Ionization Continuum: Inverse Bremsstrahlung 82

C. Scattering Process: A Photon Disappears and Another Photon Appears .. 86
 1. Scattering Amplitude—Diagrammatic Representation 86
 2. Different Types of Photon Scattering by an Atomic or Molecular System—
 3. Resonant Scattering 93

D. Multiphoton Processes: Several Photons Appear or Disappear .. 98
 1. Spontaneous Emission of Two Photons 98
 2. Multiphoton Absorption (and Stimulated Emission) between Two Discrete Atomic States 100

Contents

3. Multiphoton Ionization .. 102
4. Harmonic Generation ... 104
5. Multiphoton Processes and Quasi-Resonant Scattering 106

E. Radiative Corrections: Photons Are Emitted and Reabsorbed (or Absorbed and Reemitted) ... 109
1. Spontaneous Radiative Corrections—\(a. \) Case of a Free Electron: Mass Correction. \(b. \) Case of an Atomic Electron: Natural Width and Radiative Shift ... 109
2. Stimulated Radiative Corrections 114

F. Interaction by Photon Exchange 118
1. Exchange of Transverse Photons between Two Charged Particles: First Correction to the Coulomb Interaction 118
2. Van der Waals Interaction between Two Neutral Atoms—\(a. \) Small Distance: \(D \ll \lambda_{ab} \). \(b. \) Large Distance \(\lambda_{ab} \ll D \) 121

Complement A_II—Photodetection Signals and Correlation Functions

Introduction ... 127

1. Simple Models of Atomic Photodetectors—\(a. \) Broadband Photodetector. \(b. \) Narrow-Band Photodetector 128
2. Excitation Probability and Correlation Functions—\(a. \) Hamiltonian. Evolution Operator. \(b. \) Calculation of the Probability That the Atom Has Left the Ground State after a Time \(\Delta t \). \(c. \) Atomic Dipole Correlation Function. \(d. \) Field Correlation Function ... 129
3. Broadband Photodetection—\(a. \) Condition on the Correlation Functions. \(b. \) Photoionization Rate 137
4. Narrow-Band Photodetection—\(a. \) Conditions on the Incident Radiation and on the Detector. \(b. \) Excitation by a Broadband Spectrum. \(c. \) Influence of the Natural Width of the Excited Atomic Level ... 139
5. Double Photodetection Signals—\(a. \) Correlation between Two Photodetector Signals. \(b. \) Sketch of the Calculation of \(w_{II} \) 143
Contents

COMPLEMENT B_{II}—RADIATIVE CORRECTIONS IN THE PAULI–FIERZ REPRESENTATION

Introduction ... 147

1. The Pauli–Fierz Transformation—
 - *a.* Simplifying Assumptions.
 - *b.* Transverse Field Tied to a Classical Particle.
 - *c.* Determination of the Pauli–Fierz Transformation 148

2. The Observables in the New Picture—
 - *a.* Transformation of the Transverse Fields.
 - *b.* Transformation of the Particle Dynamical Variables.
 - *c.* Expression for the New Hamiltonian 152

3. Physical Discussion—
 - *a.* Mass Correction.
 - *b.* New Interaction Hamiltonian between the Particle and the Transverse Field.
 - *c.* Advantages of the New Representation.
 - *d.* Inadequacy of the Concept of a Field Tied to a Particle 157

III NONPERTURBATIVE CALCULATION OF TRANSITION AMPLITUDES

Introduction ... 165

A. Evolution Operator and Resolvent 167

1. Integral Equation Satisfied by the Evolution Operator 167

2. Green’s Functions—Propagators 167

3. Resolvent of the Hamiltonian 170

B. Formal Resummation of the Perturbation Series 172

1. Diagrammatic Method Explained on a Simple Model 172

2. Algebraic Method Using Projection Operators—
 - *a.* Projector onto a Subspace \(\mathcal{E}_0 \) of the Space of States.
 - *b.* Calculation of the Projection of the Resolvent in the Subspace \(\mathcal{E}_0 \).
 - *c.* Calculation of Other Projections of \(G(z) \).
 - *d.* Interpretation of the Level-Shift Operator 174

3. Introduction of Some Approximations—
 - *a.* Perturbative Calculation of the Level-Shift Operator.
 - *b.* Partial Resummation of the Perturbation Series.
 - *c.* Approximation Consisting of Neglecting the Energy Dependence of the Level-Shift Operator 179

C. Study of a Few Examples 183

1. Evolution of an Excited Atomic State—
 - *a.* Nonperturbative Calculation of the Probability Amplitude That the Atom Re-
Contents

mains Excited. b. Radiative Lifetime and Radiative Level Shift. c. Conditions of Validity for the Treatment of the Two Preceding Subsections ... 183

Complement A III—Analytic Properties of the Resolvent

Introduction .. 213

1. Analyticity of the Resolvent outside the Real Axis 213
2. Singularities on the Real Axis 215
3. Unstable States and Poles of the Analytic Continuation of the Resolvent ... 217
4. Contour Integral and Corrections to the Exponential Decay .. 220

Complement B III—Nonperturbative Expressions for the Scattering Amplitudes of a Photon by an Atom

Introduction .. 222

\section*{Complement C III—Discrete State Coupled to a Finite-Width Continuum: From the Weisskopf–Wigner Exponential Decay to the Rabi Oscillation}

1. Introduction—Overview ... 239

2. Description of the Model—\textit{a. Unperturbed States. b. Assumptions concerning the Coupling. c. Calculation of the Resolvent and of the Propagators. d. Fourier Transform of the Amplitude $U_b(\tau)$} ... 240

3. The Important Physical Parameters—\textit{a. The Function $\Gamma_b(E)$. b. The Parameter Ω_1 Characterizing the Coupling of the Discrete State with the Whole Continuum. c. The Function $\Delta_b(E)$} 244

4. Graphical Discussion—\textit{a. Construction of the Curve $\mathcal{Z}_b(E)$. b. Graphical Determination of the Maxima of $\mathcal{Z}_b(E)$. Classification of the Various Regimes} ... 246

5. Weak Coupling Limit—\textit{a. Weisskopf–Wigner Exponential Decay. b. Corrections to the Exponential Decay} ... 249

7. Strong Coupling ... 253

\section*{IV
RADIATION CONSIDERED AS A RESERVOIR: MASTER EQUATION FOR THE PARTICLES}

A. Introduction—Overview ... 257

B. Derivation of the Master Equation for a Small System \mathcal{A} Interacting with a Reservoir \mathcal{R} ... 262

1. Equation Describing the Evolution of the Small System in the Interaction Representation ... 262
Contents

2. Assumptions Concerning the Reservoir—
 a. State of the Reservoir,
 b. One-Time and Two-Time Averages for the Reservoir Observables 263

3. Perturbative Calculation of the Coarse-Grained Rate of Variation of the Small System 266

C. Physical Content of the Master Equation

1. Evolution of Populations .. 272

2. Evolution of Coherences .. 274

D. Discussion of the Approximations

1. Order of Magnitude of the Evolution Time for \(\mathcal{A} \) .. 278

2. Condition for Having Two Time Scales .. 278

3. Validity Condition for the Perturbative Expansion .. 279

4. Factorization of the Total Density Operator at Time \(t \) .. 280

5. Summary .. 281

E. Application to a Two-Level Atom Coupled to the Radiation Field .. 282

1. Evolution of Internal Degrees of Freedom—
 a. Master Equation Describing Spontaneous Emission for a Two-Level Atom,
 b. Additional Terms Describing the Absorption and Induced Emission of a Weak Broadband Radiation .. 282

2. Evolution of Atomic Velocities—
 a. Taking into Account the Translational Degrees of Freedom in the Master Equation,
 b. Fokker–Planck Equation for the Atomic Velocity Distribution Function,
 c. Evolutions of the Momentum Mean Value and Variance,
 d. Steady-State Distribution. Thermodynamic Equilibrium .. 289

Complement A\textsubscript{IV}—Fluctuations and Linear Response Application to Radiative Processes

Introduction .. 302

1. Statistical Functions and Physical Interpretation of the Master Equation—
 a. Symmetric Correlation Function,
 b. Linear Sus-
ceptibility. c. Polarization Energy and Dissipation. d. Physical Interpretation of the Level Shifts. e. Physical Interpretation of the Energy Exchanges 302

COMPLEMENT B IV—MASTER EQUATION FOR A DAMPED HARMONIC OSCILLATOR

1. The Physical System 322
2. Operator Form of the Master Equation 323
3. Master Equation in the Basis of the Eigenstates of H_A—
a. Evolution of the Populations. b. Evolution of a Few Average Values 326

COMPLEMENT C IV—QUANTUM LANGEVIN EQUATIONS FOR A SIMPLE PHYSICAL SYSTEM

Introduction 334

1. Review of the Classical Theory of Brownian Motion—
a. Langevin Equation. b. Interpretation of the Coefficient D. Connection between Fluctuations and Dissipation. c. A Few Correlation Functions 334
OPTICAL BLOCH EQUATIONS

Introduction ... 353

A. Optical Bloch Equations for a Two-Level Atom 355
 1. Description of the Incident Field 355
 2. Approximation of Independent Rates of Variation 356
 4. Geometric Representation in Terms of a Fictitious Spin $\frac{1}{2}$.. 361

B. Physical Discussion—Differences with Other Evolution Equations .. 364
 1. Differences with Relaxation Equations. Couplings between
 Populations and Coherences .. 364
 2. Differences with Hamiltonian Evolution Equations 364
 3. Differences with Heisenberg–Langevin Equations 365

C. First Application—Evolution of Atomic Average Values ... 367
 1. Internal Degrees of Freedom—a. Transient Regime.
 b. Steady-State Regime. c. Energy Balance. Mean Number of
 Incident Photons Absorbed per Unit Time 367
 2. External Degrees of Freedom. Mean Radiative Forces—
 a. Equation of Motion of the Center of the Atomic Wave
 Packet. b. The Two Types of Forces for an Atom Initially at
 Force. Dipole Force ... 370

D. Properties of the Light Emitted by the Atom 379
 1. Photodetection Signals. One- and Two-Time Averages of
 the Emitting Dipole Moment—a. Connection between the
 Radiated Field and the Emitting Dipole Moment. b. Expression
 of Photodetection Signals 379
 2. Total Intensity of the Emitted Light—a. Proportionality to
 the Population of the Atomic Excited State. b. Coherent
 Scattering and Incoherent Scattering. c. Respective Contributions
 of Coherent and Incoherent Scattering to the Total
 Intensity Emitted in Steady State 382
 3. Spectral Distribution of the Emitted Light in Steady
Contents

Complement A —Bloch—Langevin Equations and Quantum Regression Theorem

Introduction ... 388

1. Coupled Heisenberg Equations for the Atom and the Field—

VI

THE DRESSED ATOM APPROACH

A. Introduction: The Dressed Atom ... 407

B. Energy Levels of the Dressed Atom ... 410

1. Model of the Laser Beam .. 410

2. Uncoupled States of the Atom + Laser Photons System 412

 b. Energy Diagram versus $\hbar\omega_L$.. 415
5. Physical Effects Associated with Absorption and Induced
 Emission .. 417

C. Resonance Fluorescence Interpreted as a Radiative Cascade of
 the Dressed Atom ... 419
1. The Relevant Time Scales .. 419
 b. Photon Antibunching. c. Time Intervals between Two Successive Spontaneous Emissions ... 420
 Transitions between Dressed States. b. Fluorescence Triplet.
 c. Time Correlations between Frequency Filtered Fluorescence
 Photons .. 423

D. Master Equation for the Dressed Atom ... 427
1. General Form of the Master Equation—a. Approximation of
 Independent Rates of Variation. b. Comparison with Optical
 Bloch Equations .. 427
2. Master Equation in the Dressed State Basis in the Secular
 Limit—a. Advantages of the Coupled Basis in the Secular
 d. Reduced Populations and Reduced Coherences 429
 b. Transient Regime and Quasi-Steady State .. 435

E. Discussion of a Few Applications .. 437
1. Widths and Weights of the Various Components of the
 Fluorescence Triplet—a. Evolution of the Mean Dipole Mo-
 ment. b. Widths and Weights of the Sidebands. c. Structure
 of the Central Line .. 437
2. Absorption Spectrum of a Weak Probe Beam—a. Physical
 Problem. b. Case Where the Two Lasers Are Coupled to the
 Same Transition. c. Probing on a Transition to a Third
 Level. The Autler–Townes Effect ... 442
3. Photon Correlations—a. Calculation of the Photon-Correla-
 tion Signal. b. Physical Discussion. c. Generalization to a
 Three-Level System: Intermittent Fluorescence 446
Contents

Spatially Inhomogeneous Laser Wave. b. Interpretation of the Mean Dipole Force. c. Fluctuations of the Dipole Force 454

COMPLEMENT A_VI—THE DRESSED ATOM IN THE RADIO-FREQUENCY DOMAIN

Introduction .. 460

2. Spin $\frac{1}{2}$ Dressed by Radio-Frequency Photons—a. Description of the System. b. Interaction Hamiltonian between the Atom and the Radio-Frequency Field. c. Preparation and Detection 468

COMPLEMENT B_VI—COLLISIONAL PROCESSES IN THE PRESENCE OF LASER IRRADIATION

Introduction .. 490

3. Collision-Induced Modifications of the Emission and Absorption of Light by the Atom. Collisional Redistribution—
a. Taking into Account Spontaneous Emission. b. Reduced Steady-State Populations. c. Intensity of the Three Components of the Fluorescence Triplet. d. Physical Discussion in the Limit $\Omega_1 \ll |\delta_L| \ll \tau_{\text{coll}}^{-1}$.. 501

4. Sketch of the Calculation of the Collisional Transfer Rate—
a. Expression of the Transfer Rate as a Function of the Collision S-Matrix. b. Case Where the Laser Frequency Becomes Resonant during the Collision. Limit of Large Detunings 510

EXERCISES

1. Calculation of the Radiative Lifetime of an Excited Atomic Level. Comparison with the Damping Time of a Classical Dipole Moment ... 515
2. Spontaneous Emission of Photons by a Trapped Ion. Lamb–Dicke Effect ... 518
3. Rayleigh Scattering ... 524
4. Thomson Scattering ... 527
5. Resonant Scattering ... 530
6. Optical Detection of a Level Crossing between Two Excited Atomic States ... 533
7. Radiative Shift of an Atomic Level. Bethe Formula for the Lamb Shift ... 537
8. Bremsstrahlung. Radiative Corrections to Elastic Scattering by a Potential ... 548
9. Low-Frequency Bremsstrahlung. Nonperturbative Treatment of the Infrared Catastrophe ... 557
10. Modification of the Cyclotron Frequency of a Particle due to Its Interactions with the Radiation Field ... 564
11. Magnetic Interactions between Spins ... 571
12. Modification of an Atomic Magnetic Moment due to Its Coupling with Magnetic Field Vacuum Fluctuations ... 576
13. Excitation of an Atom by a Wave Packet: Broadband Excitation and Narrow-Band Excitation ... 580
14. Spontaneous Emission by a System of Two Neighboring Atoms. Superradiant and Subradiant States ... 585
15. Radiative Cascade of a Harmonic Oscillator ... 589
Contents

17. Equivalence between a Quantum Field in a Coherent State and an External Field ... 597
20. Absorption of a Probe Beam by Atoms Interacting with an Intense Beam. Application to Saturated Absorption 608

APPENDIX
QUANTUM ELECTRODYNAMICS IN THE COULOMB GAUGE—SUMMARY OF THE ESSENTIAL RESULTS

2. Particles ... 628
4. State Space ... 633

References ... 641

Index ... 645