Contents

Preface to the Third Edition xiv
Acknowledgements xv

1 Nuclear chemistry 1
 1.1 Introduction 1
 1.2 Nuclear binding energy 2
 1.3 Radioactivity and nuclear reactions 4
 1.4 Nuclear fission and nuclear fusion 7
 1.5 Spectroscopic techniques based on nuclear properties 10
 1.6 Ortho- and para-hydrogen 16
 1.7 The separation of stable isotopes 17
 1.8 The separation of unstable isotopes 21
 1.9 The application of isotopes 22
Problems 30
References for further reading 30

2 Quantum theory and atomic structure 32
 2.1 Introduction 32
 2.2 The older quantum theory 33
 2.3 Bohr's theory of the atomic spectrum of hydrogen 35
 2.4 The extension of Bohr's theory to systems containing more than one electron 38
 2.5 Wave mechanics 40
 2.6 The Schrödinger equation 42
 2.7 Applications of wave mechanics to simple problems 44
 2.8 The hydrogen atom and other one-electron species 51
 2.9 Angular momentum and the inner quantum number j 57
 2.10 Many-electron atoms 59
Problems 60
References for further reading 61
3 Electronic configurations and some physical properties of atoms

3.1 Introduction 62
3.2 The periodic table 66
3.3 Hund's rules and state symbols for free atoms and ions 70
3.4 Ionisation energies 75
3.5 Electron affinities 78
3.6 Atomic dimensions 80
3.7 Relativistic effects 81
Problems 82
References for further reading 83

4 Electronic configurations of molecules 84

4.1 Introduction 84
4.2 Molecular orbital theory: homonuclear diatomic molecules 85
4.3 Molecular orbital theory: heteronuclear diatomic molecules 92
4.4 Molecular orbital theory: polyatomic molecules 94
4.5 Valence bond theory: diatomic molecules 97
4.6 Valence bond theory: polyatomic molecules 100
4.7 Multiple bonding in polyatomic molecules 103
4.8 Multicentre bonding 105
4.9 Macromolecules and metals 108
Problems 110
References for further reading 110

5 Some physical properties of molecules 112

5.1 Introduction 112
5.2 The shapes of molecules and ions of non-transition elements 113
5.3 Symmetry 116
5.4 Bond energies 120
5.5 Force constants 123
5.6 Bond lengths 124
5.7 Bond polarities and electronegativity 126
Problems 129
References for further reading 130

6 The structures and energetics of inorganic solids 131

6.1 Introduction 131
6.2 The close packing of spheres 135
6.3 The structures of ionic solids 138
6.4 Ionic radii 142
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5</td>
<td>Radius ratio rules</td>
<td>143</td>
</tr>
<tr>
<td>6.6</td>
<td>Lattice energy</td>
<td>145</td>
</tr>
<tr>
<td>6.7</td>
<td>The Born–Haber cycle</td>
<td>149</td>
</tr>
<tr>
<td>6.8</td>
<td>Applications of lattice energetics</td>
<td>150</td>
</tr>
<tr>
<td>6.9</td>
<td>Metals</td>
<td>154</td>
</tr>
<tr>
<td>6.10</td>
<td>The defect solid state</td>
<td>157</td>
</tr>
<tr>
<td>6.11</td>
<td>Band theory of inorganic compounds</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>References for further reading</td>
<td>162</td>
</tr>
<tr>
<td>7</td>
<td>Inorganic chemistry in aqueous media</td>
<td>164</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>164</td>
</tr>
<tr>
<td>7.2</td>
<td>Conventions and units in aqueous solution chemistry</td>
<td>167</td>
</tr>
<tr>
<td>7.3</td>
<td>The hydration of ions and the solubilities of salts</td>
<td>170</td>
</tr>
<tr>
<td>7.4</td>
<td>The ionisation of acids in aqueous solution</td>
<td>174</td>
</tr>
<tr>
<td>7.5</td>
<td>Complex formation</td>
<td>176</td>
</tr>
<tr>
<td>7.6</td>
<td>Formation constants of complexes</td>
<td>178</td>
</tr>
<tr>
<td>7.7</td>
<td>Factors affecting the stabilities of complexes containing only monodentate ligands</td>
<td>181</td>
</tr>
<tr>
<td>7.8</td>
<td>Redox processes</td>
<td>184</td>
</tr>
<tr>
<td>7.9</td>
<td>The stabilisation of oxidation states by complex formation or precipitation</td>
<td>187</td>
</tr>
<tr>
<td>7.10</td>
<td>Potential diagrams and oxidation state diagrams</td>
<td>190</td>
</tr>
<tr>
<td>7.11</td>
<td>Factors influencing the magnitudes of standard redox potentials</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>References for further reading</td>
<td>195</td>
</tr>
<tr>
<td>8</td>
<td>Inorganic chemistry in non-aqueous media</td>
<td>196</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>196</td>
</tr>
<tr>
<td>8.2</td>
<td>Ammonia</td>
<td>201</td>
</tr>
<tr>
<td>8.3</td>
<td>Hydrogen fluoride</td>
<td>204</td>
</tr>
<tr>
<td>8.4</td>
<td>Sulphuric acid and fluorosulphuric acid</td>
<td>205</td>
</tr>
<tr>
<td>8.5</td>
<td>Bromine trifluoride</td>
<td>206</td>
</tr>
<tr>
<td>8.6</td>
<td>Dinitrogen tetroxide</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>209</td>
</tr>
<tr>
<td></td>
<td>References for further reading</td>
<td>209</td>
</tr>
<tr>
<td>9</td>
<td>Hydrogen</td>
<td>210</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>210</td>
</tr>
<tr>
<td>9.2</td>
<td>Isotopes of hydrogen</td>
<td>211</td>
</tr>
<tr>
<td>9.3</td>
<td>The physical properties of hydrogen</td>
<td>213</td>
</tr>
<tr>
<td>9.4</td>
<td>The preparation and chemical properties of hydrogen</td>
<td>214</td>
</tr>
<tr>
<td>9.5</td>
<td>Hydrogen bonding</td>
<td>217</td>
</tr>
</tbody>
</table>
VIII • CONTENTS

9.6 Classification and general properties of hydrides
Problems
References for further reading

10 The alkali metals
10.1 Introduction
10.2 The metals
10.3 Halides
10.4 Oxides and hydroxides
10.5 Salts of oxo-acids
10.6 Aqueous solution chemistry
10.7 Complexes
10.8 Organometallic compounds
Problems
References for further reading

11 Beryllium, magnesium and the alkaline earth metals
11.1 Introduction
11.2 The metals
11.3 Halides
11.4 Oxides and hydroxides
11.5 Salts of oxo-acids
11.6 Aqueous solution chemistry and complexes
11.7 Organometallic compounds
Problems
References for further reading

12 Boron, aluminium, gallium, indium and thallium
12.1 Introduction
12.2 The elements
12.3 Diborane and hydrogen compounds of aluminium, gallium, indium and thallium
12.4 The higher boranes and the carboranes
12.5 Metal borides
12.6 Halides and complex halides of boron
12.7 Halides and complex halides of aluminium, gallium, indium and thallium
12.8 Oxides, oxo-acids, oxo-anions and hydroxides
12.9 Nitrogen derivatives
12.10 Aluminium, gallium, indium and thallium salts of oxo-acids and aqueous solution chemistry
12.11 Organometallic compounds
Problems
References for further reading
13 Carbon, silicon, germanium, tin and lead

13.1 Introduction 287
13.2 The elements 291
13.3 Intercalation compounds of graphite 295
13.4 Hydrides 297
13.5 Carbides and silicides 299
13.6 Halides and complex halides 301
13.7 Oxides and oxo-acids of carbon 304
13.8 Oxides, oxo-acids and hydroxides of silicon, germanium, tin and lead 309
13.9 Silicates 311
13.10 Silicones 315
13.11 Sulphides 316
13.12 Cyanogen, its derivatives and silicon nitride 317
13.13 Aqueous solution chemistry and oxo-acid salts of tin and lead 319
13.14 Organometallic compounds 321
Problems 322
References for further reading 323

14 Nitrogen, phosphorus, arsenic, antimony and bismuth

14.1 Introduction 324
14.2 The elements 328
14.3 Hydrides 330
14.4 Nitrides, phosphides and arsenides 337
14.5 Halides, oxohalides and complex halides 339
14.6 Oxides of nitrogen 344
14.7 Oxo-acids of nitrogen 348
14.8 Oxides of phosphorus, arsenic, antimony and bismuth 351
14.9 Oxo-acids of phosphorus, arsenic, antimony and bismuth 354
14.10 Phosphazenes 360
14.11 Sulphides 362
14.12 Aqueous solution chemistry 364
14.13 Organic derivatives 365
Problems 367
References for further reading 367

15 Oxygen, sulphur, selenium, tellurium and polonium

15.1 Introduction 369
15.2 The elements 373
15.3 Hydrides 378
15.4 Halides, oxohalides and complex halides 383
15.5 Oxides 387
15.6 Oxo-acids and their salts 390
15.7 Sulphur–nitrogen compounds 394
15.8 Aqueous solution chemistry of sulphur, selenium and tellurium 397
15.9 Organic derivatives 398
Problems 398
References for further reading 399

16 The halogens 400
16.1 Introduction 400
16.2 The elements 404
16.3 Hydrogen halides 407
16.4 The halides: some general considerations 408
16.5 Interhalogen compounds and polyhalogen ions 412
16.6 Oxides and oxofluorides of chlorine, bromine and iodine 418
16.7 Oxo-acids of the halogens and their salts 420
16.8 Aqueous solution chemistry 425
16.9 Organic derivatives 428
Problems 428
References for further reading 429

17 The noble gases 430
17.1 Introduction 430
17.2 Compounds of xenon 433
17.3 Compounds of krypton and radon 436
Problems 437
References for further reading 437

18 The transition elements 438
18.1 Introduction 438
18.2 Physical properties 439
18.3 Chemical properties 440
18.4 Coordination numbers and geometries in transition metal complexes 445
18.5 Isomerism in transition metal complexes 452
18.6 Structural isomerism 453
18.7 Geometrical isomerism 455
18.8 Optical isomerism 457
Problems 459
References for further reading 459
19 Electronic configurations, electronic spectra, and magnetic properties of transition metal compounds 461

19.1 Introduction 461
19.2 Bonding in transition metal complexes: valence bond theory 462
19.3 Bonding in transition metal complexes: crystal field theory 465
19.4 Bonding in transition metal complexes: molecular orbital theory 473
19.5 Electronic spectra 479
19.6 Magnetic properties 484
Problems 488
References for further reading 488

20 Thermodynamic aspects of transition metal chemistry 489

20.1 Introduction 489
20.2 Crystal field stabilisation energies of octahedral and tetrahedral complexes 490
20.3 Oxidation states in aqueous media 495
20.4 Ionisation energies 497
Problems 500
References for further reading 501

21 Kinetic aspects of transition metal chemistry 502

21.1 Introduction 502
21.2 Substitution at a metal atom: some general considerations 503
21.3 Substitution in octahedral complexes 507
21.4 The racemisation of octahedral complexes 511
21.5 The correlation of rates of substitution in octahedral complexes with electronic configuration 512
21.6 Substitution in planar complexes 514
21.7 Redox processes: outer-sphere reactions 517
21.8 Redox processes: inner-sphere reactions 519
21.9 Complementary and non-complementary reactions 521
Problems 522
References for further reading 523

22 Transition metal carbonyls and related compounds 525

22.1 Introduction 525
22.2 The preparation and properties of transition metal carbonyls 527
22.3 The structures of transition metal carbonyls 530
22.4 Carbonyl hydrides and carbonylate anions and cations 533
22.5 Carbonyl halides 535
22.6 Phosphine and phosphorus trihalide complexes 536
22.7 Dinitrogen complexes 537
22.8 Nitric oxide complexes 538
22.9 Cyano complexes 539
Problems 542
References for further reading 542

23 Organometallic compounds of the transition metals 543
 23.1 Introduction 543
 23.2 Alkyl and aryl complexes 546
 23.3 Alkene complexes 547
 23.4 Allyl and butadiene complexes 549
 23.5 Complexes containing delocalised cyclic systems 552
 23.6 Carbene (alkylidene) and carbyne (alkylidyne) complexes 558
 23.7 Organometallic compounds in homogeneous catalysis 560
Problems 564
References for further reading 565

24 Transition metals of the first series 566
 24.1 Introduction 566
 24.2 Scandium 568
 24.3 Titanium 569
 24.4 Vanadium 573
 24.5 Chromium 576
 24.6 Manganese 582
 24.7 Iron 587
 24.8 Cobalt 595
 24.9 Nickel 600
 24.10 Copper 604
 24.11 Zinc 608
Problems 610
References for further reading 611

25 Transition metals of the second and third series 612
 25.1 Introduction 612
 25.2 Yttrium and lanthanum 616
 25.3 Zirconium and hafnium 617
 25.4 Niobium and tantalum 619
 25.5 Molybdenum and tungsten 623
 25.6 Technetium and rhenium 629
 25.7 The platinum metals: general aspects 630
 25.8 Ruthenium and osmium 631
25.9 Rhodium and iridium 635
25.10 Palladium and platinum 637
25.11 Silver and gold 642
25.12 Cadmium and mercury 646
Problems 650
References for further reading 651

26 Inner transition elements: the lanthanides 653
26.1 Introduction 653
26.2 Occurrence and separation 656
26.3 The metals 657
26.4 The tripositive oxidation state 659
26.5 The dipositive oxidation state 662
26.6 The tetrapositive oxidation state 663
Problems 664
References for further reading 664

27 Inner transition elements: the actinides 665
27.1 Introduction 665
27.2 Isolation and general chemistry of actinium and the actinides 667
27.3 Actinium 669
27.4 Thorium 670
27.5 Protactinium 670
27.6 Uranium 671
27.7 Neptunium, plutonium and americium 673
27.8 Curium and later elements 676
Problems 677
References for further reading 678

Outline answers to problems 679
Index 691