Optimal Control and the Calculus of Variations

ENID R. PINCH

Department of Mathematics
University of Manchester

Oxford New York Tokyo
OXFORD UNIVERSITY PRESS
1993
Contents

1 Introduction 1
 The maxima and minima of functions 1
 The calculus of variations 4
 Optimal control 9

2 Optimization in \(\mathbb{R}^n \) 13
 Functions of one variable 13
 Critical points, end-points, and points of discontinuity 16
 Functions of several variables 18
 Minimization with constraints 22
 A geometrical interpretation 25
 Distinguishing maxima from minima 28

3 The calculus of variations 33
 The fixed end-point problem 33
 Problems in which the end-points are not fixed 41
 Finding minimizing curves 46
 Isoperimetric problems 54
 Sufficiency conditions 58
 Fields of extremals 59
 Hilbert's invariant integral 62
 Semi-fields and the Jacobi condition 66

4 Optimal control I: Theory 70
 Introduction 70
 Control of a simple first-order system 70
 Systems governed by ordinary differential equations 72
 The optimal control problem 74
 The Pontryagin maximum principle 80
 Optimal control to target curves 100

5 Optimal control II: Applications 103
 Introduction 103
 Time-optimal control of linear systems 103
 Optimal control to target curves 139
 Singular controls 149
Fuel-optimal control 151
Problems where the cost depends on $x(t_1)$ 159
Linear systems with quadratic cost 163
The steady-state Riccati equation 168
The calculus of variations revisited 170

6 Proof of the maximum principle of Pontryagin 175
Convex sets in \mathbb{R}^n 176
The linearized state equations 182
The behaviour of H on an optimal path 184
Sufficiency conditions for optimal control 206

Appendix: Answers and hints for the exercises 208

Bibliography 231

Index 233