NETWORK FLOWS

Theory, Algorithms, and Applications

RAVINDRA K. AHUJA
Department of Industrial & Management Engineering
Indian Institute of Technology, Kanpur

THOMAS L. MAGNANTI
Sloan School of Management
Massachusetts Institute of Technology, Cambridge

JAMES B. ORLIN
Sloan School of Management
Massachusetts Institute of Technology, Cambridge
CONTENTS

PREFACE, xi

1 INTRODUCTION, 1
 1.1 Introduction, 1
 1.2 Network Flow Problems, 4
 1.3 Applications, 9
 1.4 Summary, 18
 Reference Notes, 19
 Exercises, 20

2 PATHS, TREES, AND CYCLES, 23
 2.1 Introduction, 23
 2.2 Notation and Definitions, 24
 2.3 Network Representations, 31
 2.4 Network Transformations, 38
 2.5 Summary, 46
 Reference Notes, 47
 Exercises, 47

3 ALGORITHM DESIGN AND ANALYSIS, 53
 3.1 Introduction, 53
 3.2 Complexity Analysis, 56
 3.3 Developing Polynomial-Time Algorithms, 66
 3.4 Search Algorithms, 73
 3.5 Flow Decomposition Algorithms, 79
 3.6 Summary, 84
 Reference Notes, 85
 Exercises, 86

4 SHORTEST PATHS: LABEL-SETTING ALGORITHMS, 93
 4.1 Introduction, 93
 4.2 Applications, 97
 4.3 Tree of Shortest Paths, 106
 4.4 Shortest Path Problems in Acyclic Networks, 107
 4.5 Dijkstra's Algorithm, 108
 4.6 Dial's Implementation, 113
 4.7 Heap Implementations, 115
 4.8 Radix Heap Implementation, 116
12 ASSIGNMENTS AND MATCHINGS, 461
12.1 Introduction, 461
12.2 Applications, 463
12.3 Bipartite Cardinality Matching Problem, 469
12.4 Bipartite Weighted Matching Problem, 470
12.5 Stable Marriage Problem, 473
12.6 Nonbipartite Cardinality Matching Problem, 475
12.7 Matchings and Paths, 494
12.8 Summary, 498
Reference Notes, 499
Exercises, 501

13 MINIMUM SPANNING TREES, 510
13.1 Introduction, 510
13.2 Applications, 512
13.3 Optimality Conditions, 516
13.4 Kruskal's Algorithm, 520
13.5 Prim's Algorithm, 523
13.6 Sollin's Algorithm, 526
13.7 Minimum Spanning Trees and Matroids, 528
13.8 Minimum Spanning Trees and Linear Programming, 530
13.9 Summary, 533
Reference Notes, 535
Exercises, 536

14 CONVEX COST FLOWS, 543
14.1 Introduction, 543
14.2 Applications, 546
14.3 Transformation to a Minimum Cost Flow Problem, 551
14.4 Pseudopolynomial-Time Algorithms, 554
14.5 Polynomial-Time Algorithm, 556
14.6 Summary, 560
Reference Notes, 561
Exercises, 562

15 GENERALIZED FLOWS, 566
15.1 Introduction, 566
15.2 Applications, 568
15.3 Augmented Forest Structures, 572
15.4 Determining Potentials and Flows for an Augmented Forest Structure, 577
15.5 Good Augmented Forests and Linear Programming Bases, 582
15.6 Generalized Network Simplex Algorithm, 583
15.7 Summary, 591
Reference Notes, 591
Exercises, 593
16 LAGRANGIAN RELAXATION AND NETWORK OPTIMIZATION, 598

16.1 Introduction, 598
16.2 Problem Relaxations and Branch and Bound, 602
16.3 Lagrangian Relaxation Technique, 605
16.4 Lagrangian Relaxation and Linear Programming, 615
16.5 Applications of Lagrangian Relaxation, 620
16.6 Summary, 635
Reference Notes, 637
Exercises, 638

17 MULTICOMMODITY FLOWS, 649

17.1 Introduction, 649
17.2 Applications, 653
17.3 Optimality Conditions, 657
17.4 Lagrangian Relaxation, 660
17.5 Column Generation Approach, 665
17.6 Dantzig-Wolfe Decomposition, 671
17.7 Resource-Directive Decomposition, 674
17.8 Basis Partitioning, 678
17.9 Summary, 682
Reference Notes, 684
Exercises, 686

18 COMPUTATIONAL TESTING OF ALGORITHMS, 695

18.1 Introduction, 695
18.2 Representative Operation Counts, 698
18.3 Application to Network Simplex Algorithm, 702
18.4 Summary, 713
Reference Notes, 713
Exercises, 715

19 ADDITIONAL APPLICATIONS, 717

19.1 Introduction, 717
19.2 Maximum Weight Closure of a Graph, 719
19.3 Data Scaling, 725
19.4 Science Applications, 728
19.5 Project Management, 732
19.6 Dynamic Flows, 737
19.7 Arc Routing Problems, 740
19.8 Facility Layout and Location, 744
19.9 Production and Inventory Planning, 748
19.10 Summary, 755
Reference Notes, 759
Exercises, 760
APPENDIX A **DATA STRUCTURES, 765**

A.1 Introduction, 765
A.2 Elementary Data Structures, 766
A.3 d-Heaps, 773
A.4 Fibonacci Heaps, 779
Reference Notes, 787

APPENDIX B **NP-COMPLETENESS, 788**

B.1 Introduction, 788
B.2 Problem Reductions and Transformations, 790
B.3 Problem Classes P, NP, NP-Complete, and NP-Hard, 792
B.4 Proving NP-Completeness Results, 796
B.5 Concluding Remarks, 800
Reference Notes, 801

APPENDIX C **LINEAR PROGRAMMING, 802**

C.1 Introduction, 802
C.2 Graphical Solution Procedure, 804
C.3 Basic Feasible Solutions, 805
C.4 Simplex Method, 810
C.5 Bounded Variable Simplex Method, 814
C.6 Linear Programming Duality, 816
Reference Notes, 820

REFERENCES, 821

INDEX, 840

x

Contents