Contents

Colour plates appear between pages 40 and 41.

1. Introduction 1

2. Surface chemical composition 11
 The extension of bulk techniques to surface studies 11
 Specifically surface techniques 14
 Photoelectron spectroscopy 18
 Auger electron spectroscopy (AES) 25
 Scanning Auger microscopy (SAM) 32
 Quantitative analysis by AES and XPS 35
 Secondary ion mass spectroscopy (SIMS) 37
 Quantitative analysis by SIMS 39
 SIMS, Auger, and XPS microscopies compared 41
 Depth profiling 43
 The atom probe 43
 A case study—NiCrAl+O 45

3. Surface structure 49
 Bulk techniques for structure analysis 49
 Surface methods using electrons 52
 Low-energy electron microscopy (LEEM) 81
 Grazing incidence X-ray diffraction 83
 Field-ion microscopy (FIM) 85
 Scanning tunnelling microscopy (STM) 90
 Ion scattering 95
 Angularly resolved photoelectron spectroscopy 96
 Surface extended X-ray absorption fine structure (SEXAFS) 97
 Predicting the surface crystallography 99
 Some selected surface structures 102
 Absorbates 105
 Summary: surface structure and composition 106

4. Surface properties: electronic 108
 Some theoretical considerations 108
 Contact potential and work function 113
Contents

The measurement of work functions 114
Surface states and band bending 120
Plasmons 127
Single atom spectroscopy and the STM 130
Surface optics 131
Electron spin resonance 133
Case study: the long search—Si(111) 7 × 7 134
Summary 138

5. Surface properties: atomic motion 139
 Surface lattice dynamics 139
 Surface diffusion 147
 Surface melting 150
 Summary 153

6. Surface properties: adsorption of atoms and molecules 154
 Some thermodynamics 155
 Adsorption processes 156
 Theory of chemisorption 161
 Experimental observations of chemisorption 162
 Surface segregation 170
 Epitaxial processes 174
 Molecular beam epitaxy (MBE) 180
 Summary 181

References 185

Index 191